
A Cloud Environment for Data-intensive Storage Services

Elliot K. Kolodner
1
, Sivan Tal

1
, Dimosthenis Kyriazis

2
, Dalit Naor

1
, Miriam Allalouf

1
, Lucia Bonelli

4
, Per

Brand
5
, Albert Eckert

6
, Erik Elmroth

3
, Spyridon V. Gogouvitis

2
, Danny Harnik

1
, Francisco Hernandez

3
, Michael

C. Jaeger
6
, Ewnetu Bayuh Lakew

3
, Jose Manuel Lopez

8
, Mirko Lorenz

7
, Alberto Messina

9
, Alexandra Shulman-

Peleg
1
, Roman Talyansky

10
, Athanasios Voulodimos

2
, Yaron Wolfsthal

1

1
 IBM Haifa Research Lab, Haifa, Israel

2
 National Technical University of Athens, Iroon Polytechniou 9, Athens, Greece

3
 Umea University, Department of Computing Science, Sweden

4
 Engineering Ingegneria Informatica SpA - R&D Labs, Via S. Martino d Battaglia 56, Italy

5
 SICS, S-164 28 Kista, Sweden

6
 Siemens AG Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany

7
 Deutsche Welle, 51063 Koln, Germany

8
 Telefonica I+D, Distrito C, Edificio Oeste 1, Ronda de la Comunicacion, Madrid, Spain

9
 RAI - Centre for Research and Technological Innovation, Corso E. Giambone 68, Torino, Italy

10
 SAP Research Israel, Hatidhar 15, Raanana, Israel

kolodner@il.ibm.com, sivant@il.ibm.com, dimos@mail.ntua.gr, dalit@il.ibm.com, miriam.allalouf@gmail.com,

ewnetu@cs.umu.se, lucia.bonelli@eng.it, perbrand@sics.se, albert.eckert@siemens.com, elmroth@cs.umu.se,

spyrosg@mail.ntua.gr, dannyh@il.ibm.com, hernandf@cs.umu.se, michael.c.jaeger@siemens.com, josemll@tid.es,

mirko.lorenz@dw-world.de, a.messina@rai.it, shulmana@il.ibm.com, roman.talyansky@sap.com, thanosv@mail.ntua.gr,

wolfstal@il.ibm.com

Abstract— The emergence of cloud environments has made

feasible the delivery of Internet-scale services by addressing a

number of challenges such as live migration, fault tolerance

and quality of service. However, current approaches do not

tackle key issues related to cloud storage, which are of

increasing importance given the enormous amount of data

being produced in today's rich digital environment (e.g. by

smart phones, social networks, sensors, user generated

content). In this paper we present the architecture of a scalable

and flexible cloud environment addressing the challenge of

providing data-intensive storage cloud services through raising

the abstraction level of storage, enabling data mobility across

providers, allowing computational and content-centric access

to storage and deploying new data-oriented mechanisms for

QoS and security guarantees. We also demonstrate the added

value and effectiveness of the proposed architecture through

two real-life application scenarios from the healthcare and

media domains.

Keywords-Cloud computing; Storage; Data-intensive services

I. INTRODUCTION

Cloud computing offers the potential to dramatically
reduce the cost of service provisioning through the
commoditization of IT assets and on-demand usage patterns.
Virtualization of hardware, rapid service provisioning,
scalability, elasticity, accounting granularity and cost
allocation models enable Clouds to efficiently adapt resource
provisioning to the dynamic demands of Internet users.
Nevertheless, today’s rich digital environment poses new
requirements and challenges towards cloud environments:

mobile devices penetrate the market, cities go digital
deploying sensors and actuators, users co-develop and co-
innovate (e.g. Wikipedia), social media allow for content and
experiences sharing. In this context, cloud environments are
facing a new challenge: the explosion of personal and
organizational digital data. In the emerging era of the Future
Internet, the explosion of raw data and the dependence on
data services is expected to be further amplified due to the
strong proliferation of data-intensive services and the digital
convergence of telecommunications, media and ICT.

The research leading to these results is partially
supported by the European Community’s Seventh
Framework Programme (FP7/2001-2013) under grant
agreement n° 257019 - VISION Cloud Project.

New data models for storage delivery based on data
objects with rich, extensible metadata and elaborated access
methods are emerging, positioning cloud-based
infrastructures for storage as the next-generation solution to
address the proliferation and the reliance on data.
Nevertheless, there are a number of research challenges such
infrastructures need to address in order to overcome
limitations related to issues such as mobility,
interoperability, storage access, security, cost, energy
efficiency, etc. In this paper we present the architecture of a
scalable and flexible cloud environment that enables the
provision of data-intensive storage cloud services, and
explore the paradigm shift in storage infrastructures driven
by storage cloud technologies, introducing clear benefits to
information management and middleware. To realize this
vision, we have identified five main enablers that are

mailto:miriam.allalouf@gmail.com
mailto:thanosv@mail.ntua.gr

reflected in the proposed architecture. These include: i)
management of the content through data objects and
associated metadata, ii) data mobility across providers
through federation mechanisms and protocols, iii)
computations performed close to storage through “storlets”,
iv) simple and efficient access to objects based on their
content and relationships, regardless of their physical
location, representation and type, and v) guaranteed quality
of service and security through enhanced management
mechanisms (e.g. monitoring and analysis framework).

The proposed architectural approach not only targets
(according to the SPI cloud stack [1]) the Infrastructure-as-a-
Service model, which refers to the provision of resources
(e.g. computational, storage, and networking), but also the
Platform-as-a-Service model, which refers to the provision of
a platform and the corresponding services (e.g. monitoring,
accounting and billing, resiliency mechanisms) to enable the
offering of cloud-based services. As such, our approach
addresses aspects that are traditionally handled by
middleware, for example, the proposed enhancements related
to data-access methods and data-oriented management
services (e.g. SLA management), as described in Section IV.

Furthermore, by changing the interface between
middleware and storage, our approach to cloud storage offers
benefits not available from traditional storage. On one hand,
cloud storage no longer provides traditional guarantees such
as the POSIX semantics of file systems, or the latency and
throughput of high-end storage devices. Furthermore, the
API to storage is changing – data objects are written all at
once as large blobs of data (via put and get operations), and
data objects are mostly immutable, namely write-all-at-once
and read-many. On the other hand, functionality traditionally
handled by middleware (e.g. by content management
systems) can now be handled by the cloud infrastructure as
in the proposed one. The cloud can store an object's metadata
along with its data, can provide Big Table services over the
objects and their metadata and in the future may even be able
to accept schemas over metadata. As a result, the proposed
approach no longer treats storage in an agnostic manner, and
when used appropriately this can be leveraged by
middleware. Furthermore, via “computational storage”, the
proposed architecture provides a built-in and secure
environment for computational tasks that are executed close
to their data and can replace some web services that are
traditionally provided through web application servers.

The remainder of the paper is structured as follows:
Section II introduces the enablers as concepts that allow the
infrastructure to facilitate and provide data-intensive
services, as well as presents a short reference to current
offerings. Section III discusses the proposed infrastructure,
data model and architecture, while Section IV describes two
real-life application scenarios from the healthcare and media
domains to demonstrate the added value and effectiveness of
the proposed approach. The paper concludes with a
discussion of future research and potential applications for
the current study.

II. ENABLING DATA-INTENSIVE STORAGE SERVICES

In this section, we describe the main enabling concepts
that should be supported in an architecture for a cloud
environment that provides data-intensive storage services.

A. Raising the abstraction level of storage

Storage has been accessed traditionally via two main
types of interfaces: block and file. The low level block
interface enables basic read and write operations, and treats
the storage as an unlimited array of raw bytes. The higher
level file system interface treats storage as containers of
semantically related bytes, with a directory structure
relationship among the containers. Modern file systems also
introduce extended attributes to files as a mechanism to
associate a limited amount of additional metadata with a file.
These two data models have been optimized for scale and
performance.

Over the last decade a new model of object storage has
been introduced for access to storage devices [2, 3, 22, 23].
This model has been successfully adopted for the cloud,
replacing the traditional file system and adapting it to cloud
scale (e.g. [4, 5, 9]). It flattens the tree hierarchy, which is no
longer relevant, and relaxes semantics and consistency. The
models that have emerged so far are not very rich with
respect to metadata, and their security model is weak,
depending on Access Control Lists (ACLs). They are also
proprietary.

We propose a more powerful data model that fits the
scale of the cloud (in the spirit of the newly emerging
Storage Cloud standard of CDMI [6]), yet has rich metadata
and access methods, and supports a strong yet flexible
security model. This data model is optimized for immutable
data, maintains a global namespace for the objects, supports
object versioning, associates system and user metadata (in
the form of (key,value) pairs) with objects and leverages a
NoSQL- type table service to provide access to objects
through this metadata. For example, in addition to the basic
"put" and "get" operations, it supports List-By(key), and
List-By(key, value -range) over collections of objects. Future
extensions could include the association of a schema with the
user metadata. The metadata allows highlighting the content
so that it can better fit with the application (the storage cloud
is no longer agnostic to the data, as in the case for file
systems and object stores). Furthermore, the proposed data
model offloads some capabilities that were traditionally
provided by the middleware layer, to the storage layer. The
motivation for this is twofold. From the point of view of the
middleware, there is no longer a need to federate over the
namespaces of multiple storage repositories or to maintain
the association between metadata and data in databases
external to the storage. From the point of view of the storage,
it enables optimizations not previously attainable, such as
collocating data and metadata and minimizing data loss by
keeping the metadata and data under the responsibility of one
system. Finally, the data model supports a distributed
security model capable of delegation and federated identity,
which is key for the cloud.

B. Data mobility and federation without boundaries

Virtualization platforms, and cloud infrastructures in
particular, allow providers and users to rapidly redeploy and
move resources. While this is beginning to be achievable for
compute resources today (such as VMs), it is not the case for
storage and data. In the absence of true data mobility, users
cannot easily migrate their data across providers and thus
suffer from data lock-in [8], which is one of the most
significant obstacles hindering wider adoption of cloud
services. Data mobility is also fundamental to addressing IT
evolution and heterogeneity, as data needs to migrate
between different platforms. Furthermore, this capability is
also key to federation and interoperability between providers
and systems.

In our architecture we propose built-in components to
address the fundamental technical barriers to data mobility
and federation, allowing new technologies to overcome these
barriers. The architecture includes two types of building
blocks: i) a layer that enables unified access to data across
storage clouds, and federates sets of data objects maintained
by users across administrative domains including
mechanisms for federated security across clouds, and ii)
built-in network optimizations to move data more efficiently
and execute data transfers intelligently and securely. One
such approach is the use of network deduplication, which
minimizes duplicated data transfer over the network.
However, as analyzed in [28, 29], a key challenge in this
approach is to exploit these data reduction techniques while
preserving privacy and providing proofs-of-ownership
(PoWs) for the data.

C. Computational Storage

Compute and storage are usually treated as two different
resources in a decoupled manner. Given that bandwidth is
neither infinite nor networking costs negligible, for many
applications it is better to move the computation to the data,
rather than bring the data to the computation. As the cloud
model has emerged, this idea of bringing compute to storage
has been applied for restricted programming paradigms, e.g.,
MapReduce [9], or specifically for key-value storage
services, e.g., Comet [26]. Also, approaches such as [25]
study how to utilize resources in a large cluster by executing
data-parallel programs. We propose a more general paradigm
that works for every object-based storage repository.

The primary role of computation in emerging data-
intensive storage environments is to serve data by analyzing,
refining and transforming it, discovering correlations and
relations, and reflecting this knowledge back into the data
through metadata annotations and derived data structures. To
enable “computational storage”, the proposed architecture
follows these main principles: i) computations are executed
close to their data, since the size of an encapsulated
computation is typically small compared to the size of the
data it accesses, so generally the computation should be
moved close to data (ideally co-located so no networking
resources are consumed), ii) high utilization of cloud
resources enabling parallelism where appropriate, iii) high-
level control of computations by the users through policies
without the need to start, stop or manage individual

computations. For example, computations can be injected
into the cloud and instructed to analyze all data objects of a
given type or within a given context (as characterized
through the data model).

These principles are reflected in our architecture through
a programming model for these computational agents, called
storlets, which were originally introduced in the context of
digital preservation repositories [24]. Storlets are released
into the cloud and activated by events on data; they define
not only the computation, but also triggering conditions
whereby storlets are activated (e.g. on the access of a given
object, the creation of a data object with given metadata, and
the addition of new metadata to an existing object),
constraints that apply during the storlet lifetime (e.g.
maximum CPU usage), input and output data objects as well
as the necessary credentials to access them, and the
management interface to deal with aspects such as billing
and accounting.

A storlet can be very long-lived and be repeatedly
activated based on its triggering conditions, performing some
computation, and then becoming passive again. A runtime
environment schedules and executes a storlet in a sandbox,
enforcing constraints and mediating between the storlet and
other platform services, e.g., for accessing, creating and
modifying the metadata of data objects. The programming
model subsumes traditional batch-job computations through
the special case of a storlet for which the triggering condition
is already met on storlet insertion. Regarding the model for
fault-tolerance, when a storlet is passive it is treated like a
data object (i.e., replicated) and when a storlet is active it is
monitored and upon failure re-executed from its
checkpointed state when last passive.

D. Content-centric Access

Content-centric storage is a new paradigm that enables
access to a data object through information about its content,
rather than a path in a hierarchical structure. An application
does not require any knowledge about the physical location,
the data store organization, or the place of an object in a
storage hierarchy, rather it accesses the desired content based
on the metadata associated with the object. This paradigm is
similar to content-centric networking [15] and its data-
counterpart CIMPLE [27], but targeted to cloud-scale
systems.

Our approach, which builds on the rich data model
described above in Section II.A, enables an application to
query for content through various forms of metadata: i) user
metadata, e.g., describing a data object’s content and ii)
system metadata, e.g., regarding usage (number of accesses)
and query history to identify popular or well matched data
objects. There is also synergy with computational storage;
user metadata can be extracted by an application-specific
storlet that asynchronously analyzes a data object and a later
access can be based on the extracted metadata. Content-
centric access also allows querying content based on key-
value metadata pairs, and other kinds of information
including object relations (e.g. equivalence and
subsumption). It supports any domain by allowing the
definition of domain-specific storage optimizations.

Furthermore, it scales to the cloud, allowing storage to be
spread out across multiple clusters and data centers.

E. Capabilities for Cloud-based Storage

Although cloud storage as available from providers such
as Amazon and Google offers useful features such as
demand-based access to raw storage resources, it is not ready
to store the critical data of individuals, businesses and
governments with the required reliability and QoS as
evidenced, for example by the rudimentary SLA of Amazon
S3 [5, 12]. We are developing technologies necessary to
close these gaps, addressing aspects of QoS and security
assurance as required for business critical and sensitive
applications while building a cloud infrastructure that
continues to maintain the cloud spirit (e.g. virtualization,
pay-per-use, scalability). Current cloud storage providers
offer SLAs that guarantee service availability and give
service credit or refunds for lack thereof [12, 17, 18], but do
not address data availability and protection. In research an
architecture and protocol for an SLA-based trust model for
cloud computing [19], and approaches for managing the
mappings of low-level resource metrics to high-level SLAs
[20, 21] have been proposed.

Architectural challenges include: supporting multi-
tenancy, where a massive number of users share the same
storage infrastructure, guaranteeing secure and authorized
access to the data and services, and providing tools for
checking compliance with standards and regulations. In
addition, given the scale, management of the storage cloud
needs to be as automatic as possible, e.g., requiring the
automatic placement of data, and automated provisioning
and operation of the underlying storage. Furthermore, the
architecture must provide hooks for accounting and billing of
the storage services to be used for measuring, charging and
reasoning about their cost. It also requires an advanced
monitoring mechanism, going beyond a simple messaging
system to aggregating, applying rules and extracting valuable
information from the analysis, and to being modular, i.e.,
allowing new sources of information to be included as the
need arises. Monitoring in cooperation with an advanced
SLA management framework (which among others, take into
consideration content-related terms) enables proactive SLA
violation prevention.

F. Current offerings

The most notable commercial cloud storage services
include Amazon S3 [5], Windows Azure Blob Service [13],
EMC Atmos [7] and Google Storage for Developers [14],
which do not fully realize the enablers discussed in Section
II. Starting from the data models, they are basic. Amazon S3,
Google Storage, and the Windows Azure Blob Service allow
associating user metadata in the form of key value pairs with
objects and blobs, but they simply store the metadata and
pass it back. EMC Atmos has a slightly richer model; it
allows some of keys (called tags by Atmos) to be listable;
this enables retrieving the objects that have a specific tag.
The support for federation does not exist or is limited and
requires homogeneity. Amazon S3, Google Storage and the
Windows Azure Blob Service do not have any support for

federation. EMC Atmos allows federating data in an Atmos
system in a customer data center with the customer's data in
a cloud, provided it is also implemented with Atmos. No
current cloud storage offering provides computational
abilities as an integral part of the cloud storage system to the
best of our knowledge. Access to an object is solely through
its name with Amazon S3, Google Storage and the Windows
Azure Blob Service. As mentioned above, EMC Atmos has a
slight richer access capability through its listable tags. But no
current cloud storage system has a rich flexible access to
storage based on its content and relationships. Finally, the
QoS mechanisms and SLAs provided by current offerings
are very basic. In our approach, models, requirements and
SLA schemas are expressed not only on storage resources
and services, but also on the content descriptions for the
underlying storage objects, in support of content centric
storage.

III. STORAGE CLOUD ENVIRONMENT

In this section we present the underlying infrastructure,
the data model and the architecture of the proposed storage
cloud environment that addresses the challenges and realizes
the concepts presented in the earlier sections.

A. Infrastructure

The storage cloud is built on an infrastructure that
consists of multiple data centers, each of which may have
one or more storage clusters containing physical compute,
storage and networking resources. The data centers are
connected by a dedicated network. The minimum bandwidth
for inter-data center links is 1GB.

A storage cluster is composed of storage rich nodes
constructed from commodity hardware and connected by
commodity interconnect. As common for cloud
infrastructures, the storage cloud is built from low cost
components, ensuring reliability in the software, and
building advanced functionality on top of this foundation.
For example, given today's hardware, the initial hardware
configuration for the nodes could be 4 or 8 way
multiprocessors (taking multicore into account) with 12 to 16
GB of RAM. Each node could have 12 to 24 high capacity
direct attached disks (e.g. 2TB SATA drives). The cluster
interconnect is 1GB at a minimum. The architecture, design
and implementation should support a system with hundreds
of storage clusters, where each storage cluster can have
several hundred nodes and the storage clusters are spread out
over dozens of data centers.

B. Data Model

The data model extends the emerging cloud object
models (e.g. S3 [5], Atmos [7] and CDMI [6]). At the heart
of the proposed data model is the data object. A data object
contains data of arbitrary type and size, and has a unique
identifier that can be used to access it. Conceptually an
object is fixed content - it is written as a whole and cannot be
partially updated in byte ranges, but it can be partially read.
An object may be overwritten, in which case the whole
content of the object is replaced. Versioning is supported and
when it is enabled, the system retains the previous version of

the object. Data objects are contained in containers. There is
no nesting or hierarchy of containers. Each data object
resides within the context of a single container. Containers
serve several purposes:

 Data management. Containers group related data
objects. Policies are set on a container and applied to
all objects in it, e.g., whether the objects in the
container are versioned.

 Isolation. Containers divide the namespace at the
highest level, and provide isolation among objects
between containers.

 Internal management. Containers are the unit of
placement. This reduces the frequency of global
placement decisions, reduces the size of location
information that has to be retained globally, and
helps in routing client requests efficiently to the right
cluster in the cloud.

Two categories of metadata are associated with a data
object: user metadata and system metadata. The user
metadata is set by the user and contains information about
the object. Its meaning and context are transparent to cloud
storage system. However, the system does recognize the
format of the user metadata and enables queries based on its
content. A common format for user metadata is a list of
name-value string pairs. A client can also use other formats
and indicate the format through a XML schema. In contrast
to user metadata, system metadata has concrete meaning to
the cloud storage system. It either directs the system how to
deal with the object (e.g. access control, reliability,
performance requirements), or it provides system
information about the object (e.g. size, creation time, last
access time) to the user.

Updating the metadata for an object is possible without
updating the actual data; in particular, a new metadata field
can be added or an existing metadata field can be updated
without updating the other fields. On the other hand, the user
cannot update the data of an object without updating its
metadata, i.e. when the data of an object is overwritten all of
its metadata must also be replaced.

Regarding metadata and data retrieval, a user can retrieve
the whole object, both its metadata and data, at the same
time. In this case the system guarantees strong consistency
between the object version and the metadata, i.e. the
metadata returned is the metadata that belongs with that
version. A user can also retrieve the metadata for an object
without retrieving its data.

Containers have metadata associated with them. This
metadata can be user metadata or system metadata as
described earlier for objects. Naturally, containers have a
different set of system metadata items, for example, a quota.

 Besides the metadata for objects and containers, we
extend the data model to include computation on the data
objects, which is performed (executed) within the cloud
storage environment. As mentioned in Section III.C,
computations are performed through storlets that are
triggered according to specific events.

Objects may be replicated across multiple clusters and
data centers. The degree of replication and placement
restriction policies are defined and associated with the

object's container. We employ a symmetric replication
mechanism, where any operation on an object can be
handled at any of its replicas. The consistency model for
updates to both objects and their metadata is eventual
consistency [30]. A storlet, when triggered, is executed once,
usually at the site where the triggering condition first
occurred.

The account model includes tenants and users. A tenant
is an organization that subscribes to storage cloud services. A
tenant may represent a commercial firm, a governmental
organization, or any other organization or group of persons.
A user is the entity that actually uses the storage services.
The term “user” may refer to a person or to an application. A
user belongs to exactly one tenant, although a person could
own a user account in more than one tenant. A user has a
unique identifier within its tenant and has credentials
allowing it to authenticate itself. A user may create
containers and data objects in them. Ownership of a
container is assigned to a user within the tenant. Ownership
of a data object is assigned to a user within the tenant to
which the object’s container belongs (typically but not
necessarily the container’s owner).

C. Architecture

 We conceptualize the architecture in two dimensions. In
the first dimension, the architecture has a logical separation
between data-related operations (e.g. adding, changing and
deleting data) and management operations (e.g. service
provisioning and monitoring). In the second dimension, each
of these has an external access / interface layer that provides
access to users and applications, and an internal operating
layer that executes these external requests as well as
autonomous operations such as dynamic optimizations, load
balancing, and monitoring. Schematically, these dimensions
provide a layered foundation for the architecture.

Figure 1 presents a high-level view of the architecture
including the interfaces towards applications, users and
administrators, the layers of the architecture and the
interactions between the layers. The architecture introduces
two complementary services, the Data Service and the
Management Service, which together provide the functions
of a cloud for data-intensive services. The Data Service,
including the Data Access Layer (DAL) and the Data
Operating Layer (DOL), enables manipulation of data
objects and their metadata, computation on storage, mobility,
availability, reliability and security. The DAL provides
unified interface to data across the clusters of a cloud, and
encapsulates the DOL which realizes the data service over a
set of distributed heterogeneous physical resources.

The Management Service, including the Management
Interface Layer (MIL) and the Management Operating Layer
(MOL), enables service provisioning and monitoring,
accounting and billing, security management and
transformation of user-specified service level requirements to
management operations on the underlying infrastructure
level. This service is also distributed across the clusters of a
cloud. The MIL, just like the DAL, provides a unified
interface to management of services across the clusters of a
cloud, and encapsulates the MOL which realizes the

management service over a set of distributed heterogeneous
physical resources. The MIL deploys management models
that translate business level objectives into operating level
settings and tasks.

Figure 1. Layers, roles and interfaces in the architecture

The realization of the layers is distributed. For example,
an object may be stored in one cluster and accessed through
a request addressed to a second cluster. The DAL in the
second cluster finds the target cluster on which the object
resides, and transparently redirects the request to it.
Furthermore, the implementation of the layers is highly
distributed and parallel; the same software stack runs on
every server of a cluster, and many client operations carried
out in parallel on each server.

The architectural separation between the data and
management services is inspired by the unique service model
of the storage cloud. In compute clouds, the management
service is used to provision and manage compute resources,
which interact with external entities as defined by the service
provider. The storage cloud is different - once the storage
resources are provisioned, they may be used by different,
independent service consumers through cloud storage APIs,
with different characteristics and requirements on latency,
throughput, availability, reliability, consistency, etc. The data
service and the management service are designed to be
separate and independent in order to facilitate this
differentiation and provide the flexibility required to enable
the innovations mentioned earlier.

In the remainder of the section we provide more details
on the layers. First, though, we describe the Global View,
which provides common services accessed by all four layers.
It is a cloud-wide service that runs on representative nodes in
each of the clusters composing the storage cloud and must be
highly available, despite possible node, cluster and data
center failures, and partitions between clusters/data centers.
It consists of three services: the Global Catalog, the Resource
Map and the User Service. The Global Catalog maps from
container name to the clusters where the container's replicas
reside and also holds container metadata. The Resource Map
holds an inventory of cloud resources: the location of
clusters, the distances and bandwidth between clusters, and
the resources available in each cluster. The User Service
holds information about tenants, users and authentication.

1) Data Access Layer

The primary interaction point for applications and clients
of the storage cloud is the Data Access Layer, which
provides access to the content across the clusters of the
underlying infrastructure. It includes: i) security components
for access control (authentication and authorization), and ii)
content-centric access components to translate complex
storage requests from the application into basic queries on
the underlying store in the DOL. The components are
passive and act upon request. A pipelined design enables
parallel processing across the underlying resources, so that
the translation of the content-centric requests and the
handling of the resulting queries to the DOL can be
decoupled, thereby enabling the optimal assignment of
processing resources.

Figure 2 shows the technical organization of the DAL. It
depicts the components and the interactions between them.

The Request Handler processes incoming requests and
implements basic performance and scalability features with
regard to the distribution of the system. It interacts with
Secure Access Control to authenticate and authorize a
request, and passes the request to the proper component of
the DAL for handling.

The Content-Centric Service translates complex queries
posed via its rich query API into basic metadata queries on
the key-value pairs associated with the objects. Employing a
cloud paradigm for application design, the translation
processing and the derived query operations are designed in
an asynchronous and parallelizable way. Using an inverted
half-sync-half-async pattern approach, queries are received
from the application in a synchronous manner, while
internally queries are issued asynchronously to the internal
storage subsystem. This approach allows rearranging internal
queries according to complexity, priority or other criteria.
For this purpose the DAL and DOL are connected via an
asynchronous communication component.

Figure 2. Data Access and Data Operating Layers

Secure Access Control provides authentication and
authorization for requests. It interacts with the User Service
of the Global View in order to obtain data related to users
and access control.

2) Data Operating Layer
The objective of the Data Operating Layer is to provide

the core object services. It acts as a “middle” layer between
the DAL functionality and the storage itself. It supports both
the data model and the other features of the proposed
architecture such as an execution environment for storlets,
data mobility and queries on metadata for content centric
storage. The DOL is highly scalable and continuously
available, and also provides hooks for management (e.g. for
controlling QoS).

The technical organization of the DOL is shown in
Figure 2. The components of the DOL are cluster-wide
services that are highly distributed and have representatives
that run on each node of a storage cluster. We describe them
below.

The Object Service orchestrates the execution of DOL
operations by interacting with the DOL's other components,
e.g., for a put operation on an object, it checks authorization
through the Access Enforcer, stores the object's data in the
Storage Manager, stores the object's metadata in the
Catalog, replicates the object through the Replication
Manager, and notifies Storlet Execution that the put has
occurred.

The Catalog is a cluster-wide service that stores the
metadata for each object residing in its cluster. It provides an
efficient mapping from an object's name to its storage
location in the cluster and its metadata. It also provides query
operations over the objects in a container, such as query by
key name (return all objects that have a particular key in
their metadata) and query by key name and value range
(return all objects that have a value within a particular range
for the key). These queries are essential to the
implementation of content-centric storage. The Catalog also
stores state that needs to be shared across a cluster, for
example the internal state of the Replication Manager. The
Catalog is implemented using Cassandra, a distributed
column-oriented NoSQL database.

The role of the Replication Manager (RM) is to replicate
data across the clusters of the system to the required degree
of resiliency both during regular operation and failure
recovery. During regular operation, the RM is called by the
Object Service when containers or objects are created,
deleted or updated. It is responsible for ensuring that the new
state which results from such an operation is replicated to all
other clusters where the corresponding container/object
resides. In failure cases, the RM is invoked in order to
restore containers or objects to the desired level of resiliency.
The RM replicates both data and metadata across clusters. It
is not responsible for the replication of object metadata
within a cluster (this is handled by the Catalog),

The Storage Manager encapsulates the underlying
storage system, providing storage for object data and also for
the Catalog. It could employ a distributed file system or it
could use the local file system on each server in the cluster.

Storlet Execution receives event notifications from the
Object Service and triggers the appropriate storlet. Storlet
Execution provides an execution environment for storlets: it
stores references to passive storlets (storlets that are not
currently active and stored as data objects); it activates

storlets that have been triggered; and it runs active storlets in
a sandbox that safely controls access to their resources, while
it also monitors them. When a storlet is first stored into the
DOL as a data object, Storlet Execution is also responsible
for preparing it for execution, e.g., putting it in a passive
state and setting up its triggers.

The Access Enforcer is the component that enforces the
access control decisions at the DOL layer. For example,
during the storlet execution it is contacted to validate the
permissions of the storlet to perform the desired operations.

3) Management Interface Layer
The Management Interface Layer provides APIs and

interfaces for management, e.g., container management,
account management, SLA management, and accounting and
billing.. Through the MIL, users can also develop models
including metadata associated with the storage resources, the
service characteristics, the usage, the service requirements,
etc. These models govern the operation of the MOL.
Authentication and authorization mechanisms allow the
various users of the platform to access the management
mechanisms, while adhering to the compliance requirements.
Figure 3 shows the main components of the MIL.

Tenant and User Management allows the creation and
deletion of tenants and users as well as defining roles for
users (e.g. customer or administrator). This information is
captured in the User Service of the Global View. Through
this component, a cloud administrator is able to create
tenants, a tenant administrator is also able to create users that
belong to it and have access to the cloud services to which
the tenant has subscribed. Moreover, a tenant administrator is
able to define the different roles a user may have for
accessing different services.

SLA Management provides an interface to the SLA
management framework residing in the MOL. Users can
request an SLA template regarding specific services the
platform offers, create an SLA request by setting specific
quality parameters in a template, sign an SLA and receive
notifications with regard to SLA violations.

Container Management allows users to create and delete
containers, and update container metadata. It also allows a
user to list the containers belonging to a specific tenant or
user.

Model Development provides an interface to construct
management models. A model incorporates various kinds of
information, such as object metadata, resource and service
related information, usage related data, requirements, and
SLA-related information. Models express the importance of
data (an object or set of objects) and a resource in
comparison to others, and efficiently provide input to
decision making and placement mechanisms, as well as
contribute to better resource allocation and power
management by the MOL.

Accounting and Billing collects raw resource usage
metrics (e.g. capacity, bandwidth, CPU utilization, number
of storage operations, number of objects, replication level,
number of executed storlets) and SLA violation events. For
each tenant it tallies resource usage and compensates for
SLA violations in order to calculate a monetary amount,
according to a tenant-specific billing and pricing scheme.

This component also provides user-level accounting to a
tenant, so that a tenant can bill its own users.

Figure 3. Management Interface and Management Operating Layers

Compliance checks operation logs and flags compliance
violations, notifying the system administrator that they have
occurred. It takes into consideration compliance to EU
directives such as 2002/58 (personal data circulation),
2006/24 (retention of data and public communications
networks).

4) Management Operating Layer
The Management Operating Layer provides management

services for the proposed cloud environment. It consists of
two parts: a cloud-wide view that has access to usage patterns
across all data centers and clusters and makes decisions at
the cloud level, and a cluster view that has a view of usage
patterns within its cluster and makes decisions at the cluster
level. Thus, the decision making process of the MOL's
components is hierarchical: first a decision is made at the
cloud level, e.g., choosing the storage clusters where data
will be placed; and then a corresponding decision is made at
the cluster level, e.g., to decide on which server to place the
data. Figure 3 shows the components of the MOL.

A Knowledge Base stores statistics and history
information with regard to previous management decisions.
There is a knowledge base in the cluster view for each
cluster and in the cloud view for the cloud.

Monitoring collects data from the DOL as well as from
the infrastructure through low-level probes, and aggregates
and distributes monitoring information across the clusters
and across the cloud.

Analysis analyzes the monitoring data in order to find
correlations among the various metrics, and to discover
usage patterns per container/user/tenant, such as periodic
bursts or performance degradations. The usage models
discovered are stored in the appropriate Knowledge Base.
Analysis consumes the data provided by the monitoring
component and stored in the Knowledge Bases (where
monitoring data is aggregated) and delivers the outcome of
its analysis to the Evaluator and to the appropriate
Knowledge Base (cluster or cloud level).

SLA Management consumes the analyzed monitoring
data in order to enable the proactive prevention of SLA
violations. It takes into account specific SLA terms as well
as policies that may be set by an administrator (e.g. create an
additional replica in case of a given increase in user requests)
and through the Evaluator pro-actively triggers events to
prevent SLA violations. A novel aspect of SLA Management
are content-related terms in order to support policies
regarding content-centric access.

The Evaluator receives information from two sources: i)
management components (e.g. SLA management) regarding
configuration parameters (e.g. a monitoring threshold), and
the ii) analysis component. Based on this information, the
Evaluator generates events and propagates them to the
appropriate management component to perform actions
accordingly.

Placement places both data and storlets. For data it
decides on which clusters to place the replicas of a container,
and for storlets it finds the appropriate resources for their
execution. It takes into account constraints such as locality
(e.g. proximity of a container replica to its users),
compliance (e.g. data cannot leave the borders of a certain
country), and resiliency (e.g. the number of copies and their
placement in order to achieve a certain level of reliability).
Regarding storlets, there is an intrinsic relationship between
the placement of an object and the storlets that run on it. For
example, there is a performance trade-off between choosing
powerful or less loaded compute nodes for faster storlet
execution and minimizing the cost of data transfer by placing
the storlet closer to its data.

IV. VALIDATION CASES

We present two real-life application scenarios from the
healthcare and media domains to demonstrate the added
value and the effectiveness of the storage cloud architecture.

A. Healthcare

This scenario focuses on personalized healthcare, which
is a patient-centric view of all healthcare activities, related
data and services. A patient's healthcare data is stored and
used either by the patient or by one of his/her healthcare
providers. Third party applications may also access a
patient's data to provide services to the actors in the scenario.
Moreover, healthcare data is commonly stored according to
complex standards such as HL7, DICOM or OpenEHR.
These standards provide exact descriptions of medical
information while at the same time allowing healthcare
systems and medical devices to interoperate reliably and
precisely. Based on the above, the personalized healthcare
scenario poses requirements on storage cloud environments
that are met through the enablers and architecture described
in this paper:

1. The ability to store all patient-related data as native
and immutable objects and make these objects and the
relationships between them accessible as a data service. Here
content-centric access supports relationships and access to
the objects based on their relationships. Storlets provide the
means to transform data to required formats, and extract and
associate appropriate metadata. Current storage offerings do

not provide such content-centric or storlet functionalities and
therefore application specific services, responsible for
maintaining these relationships, need to be deployed.

2. The ability to hide the complexity of healthcare data to
developers and support them to supply the data as a service,
while securing the data and providing an utmost level of
privacy for the patient. Here the metadata and content-centric
capabilities ease the task of organizing and retrieving
medical data. Furthermore, storlets enable healthcare
applications to efficiently perform complex transformations,
aggregations and analysis on masses of healthcare data
without downloading the data to an application's local
storage or needing to deploy VMs that contain the necessary
applications, as would be the traditional way in present
Clouds. In addition to reducing bandwidth requirements, our
approach has the additional benefit that it makes it easier to
protect data against unauthorized use.

3. The ability to provide data to users according to their
roles and context (e.g. doctors, patients, online medical
service providers, researchers, pharmaceutical companies).
Here, again storlets can adapt the view of the data based on
the user's role, e.g., a storlet anonymizes data before
providing access to researchers.

B. Media

This scenario focuses on professional media management
in media production. Established media production
workflows need to evolve to be more flexible and
interoperable with standard IT. A starting point is the output
of a typical media generation device (e.g. a camcorder) or
tape-based media storage in the form of an MXF file. MXF
is the SMPTE standard specifying the file format for
exchange of audiovisual material between professional
devices. An MXF file can contain several Material objects,
each of which is an aggregation of audio and video Tracks.
Each Track can be further decomposed into Sequences, each
of which has a pointer to the actual "Essence" (i.e., the audio
and/or video stream whose rendering generates the output
material). Such a data structure, nowadays, is actually hidden
inside the file and only dedicated software stacks are able to
use it in practice. Based on the above the media production
scenario poses requirements on storage cloud environments
that are met through the enablers and architecture described
in this paper:

1. The ability to avoid vendor lock-in and overcome the
lack of interoperability between different devices. Here, the
data model allows MXF material to be uploaded and
represented as Material, Track, Essence objects, where
metadata records the relationships between them, and
content-centric access allows flexible ways to access the
uploaded data. This enables a standard way of storing and
accessing media content.

2. The ability to access, manipulate and manage material
structure at the storage level. Here content-centric access
allows easy browsing of the content based on its natural
structure. Storlets can provide processing capabilities such as
feature extraction and transcoding without the need to
download the content. They can also provide the ability to
extract shot and keyframe information. Overall, the ability to

provide storlets allows higher-level application stacks to be
thinner and easier to manage and interchange, similar to the
case of healthcare discussed earlier.

3. The ability to allow users to interact with the content in
order to “characterize” it with the use of tags and metadata.
Here, again, the rich data model and content-centric access
are a very good fit for media. While this functionality is
already present in many web applications, it is application
specific. In VISION Cloud it is supported in a generic
fashion in storage and can be tailored for any application.

V. CONCLUSIONS

A representative figure highlighting the huge amount of
data currently being produced is the fraction of data on the
Internet that is indexed by Google, which is only 0.004%
[16]. In this context one of the main challenges in cloud
environments is the management of the data being produced
by various sources (e.g. sensors, cameras), and also by
people (i.e., user generated content). Management refers not
only to storing but also to accessing these data, moving data
across providers, performing computational tasks on data,
and addressing issues related to security, quality of service,
costs. In this paper we presented the architecture for a
scalable and flexible cloud environment that is being
developed by the VISION Cloud EU-funded research
project. The architecture addresses the challenge of
providing data-intensive storage cloud services through
raising the abstraction level of storage, enabling data
mobility across providers, allowing computational and
content-centric access to storage and deploying new data-
oriented mechanisms for QoS and security guarantees. We
have also demonstrated the added value and effectiveness of
the proposed architecture through two real-life application
scenarios from the healthcare and media domains.

ACKNOWLEDGMENT

The research leading to these results is partially
supported by the European Community’s Seventh
Framework Programme (FP7/2001-2013) under grant
agreement n° 257019 - VISION Cloud Project.

REFERENCES

[1] Peter Mell and Tim Grance. The NIST definition of cloud computing.
Technical report, July 2009.

[2] "Object-based Storage Device Commands" (OSD), SNIA, T10
committee http://www.t10.org/ftp/t10/drafts/osd/osd-r10.pdf

[3] The eXtensible Access Method (XAM) specification, SNIA XAM
Initiative http://www.snia.org/forums/xam/

[4] EMC Atmos. http://www.emc.com/storage/atmos/atmos.htm

[5] Amazon simple storage service (Amazon S3), 2009.
aws.amazon.com/s3.

[6] Cloud Data Management Interface (CDMI), SNIA Cloud Storage
Technical Work Group http://www.snia.org/cloud

[7] EMC Atmos storage service http://www.emccis.com/

[8] Michael Armbrust, Armando Fox, Rean Griffïth, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. Above the clouds: A berkeley
view of cloud computing. Technical report, University of California
at Berkeley, February 2009.

[9] OpenStack Object Storage, http://openstack.org/projects/storage/

[10] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. OSDI '04. pages 137–150.

[11] “Amazon Web Services Goes Down, Takes Many Startup Sites with
It", Tech Crunch, February 2009

[12] Amazon S3 Service Level Agreement, http://aws.amazon.com/s3-sla/

[13] Microsoft Windows Azure Platform
http://www.microsoft.com/azure/default.mspx

[14] Google Storage for Developers. http://code.google.com/apis/storage/

[15] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F.
Plass, Nicholas H. Briggs, and Rebecca L. Braynard. Networking
named content. In Proceedings of the 5th international conference on
Emerging networking experiments and technologies, CoNEXT ’09,
pages 1–12, New York, NY, USA, December 2009. ACM.

[16] M. Jasra, "Google has indexed only 0.004% of all data on the
Internet", http://www.webanalyticsworld.net/2010/11/google-indexes-
only-0004-of-all-data-on.html.

[17] Nirvanix service level agreement. http://www.nirvanix.com/sla.aspx

[18] Microsoft Corporation. Windows azure pricing and service
agreement, 2009. URL
http://www.microsoft.com/windowsazure/pricing/.

[19] Mohammed Alhamad, Tharam Dillon, and Elizabeth Chang. Sla-
based trust model for cloud computing , Network-Based Information
Systems, International Conference on, pp. 321–324, 2010.

[20] Ivona Brandic, Vincent C. Emeakaroha, Michael Maurer, Schahram
Dustdar, Sandor Acs, Attila Kertesz, and Gabor Kecskemeti. Laysi: A
layered approach for sla-violation propagation in selfmanageable
cloud infrastructures. Computer Software and Applications
Conference Workshops, 365–370, 2010.

[21] Vincent C. Emeakaroha, Ivona Brandic, Michael Maurer, and
Schahram Dustdar. Low level metrics to high level slas - lom2his
framework: Bridging the gap between monitored metrics and SLA

parameters in Cloud environments. The 2010 High Performance
Computing and Simulation Conference (HPCS 2010),

[22] CAS, Content Addressable Storage,
http://en.wikipedia.org/wiki/Content-addressable_storage

[23] S. Quinlan and S. Dorward. Venti: a new approach to archival
storage. Proceedings of the FAST 2002 Conference on File and
Storage Technologies, 2002.

[24] Simona Rabinovici-Cohen, Michael Factor, Dalit Naor, Leeat Ramati,
Petra Reshef, Shahar Ronen, Julian Satran, David L. Giaretta.
Preservation DataStores: New storage paradigm for preservation
environments. IBM Journal of Research and Development 52(4-5):
389-400 (2008).

[25] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis
Fetterly. Dryad: Distributed Data-Parallel Programs from Sequential
Building Blocks. European Conference on Computer Systems
(EuroSys), Lisbon, Portugal, March 21-23, 2007.

[26] Roxana Geambasu, Amit Levy, Tadayoshi Kohno, Arvind
Krishnamurthy and Henry M. Levy. Comet: An Active Distributed
Key-Value Store. Proc. of the Conference on Operating Systems
Design and Implementation (OSDI), October 2010.

[27] Thomas Delaet, and Wouter Joosen, Managing your content with
CIMPLE - a content-centric storage interface. IEEE Conference on
Local Computer Networks - LCN, pp. 491-498, 2009,

[28] Danny Harnik, Benny Pinkas, Alexandra Shulman-Peleg. Side
Channels in Cloud Services, the Case of Deduplication in Cloud
Storage. IEEE Security & Privacy 8(6): 40-47 (2010).

[29] Shai Halevi, Danny Harnik, Benny Pinkas, Alexandra Shulman-
Peleg. Proofs of Ownership in Remote Storage Systems. CCS 2011:
18th ACM Conference on Computer and Communications Security.
Oct, 2011.

[30] Werner Vogels. Eventually Consistent. ACM Queue 6, 6 (October
2008), 14-19.

http://www.webanalyticsworld.net/2010/11/google-indexes-only-0004-of-all-data-on.html
http://www.webanalyticsworld.net/2010/11/google-indexes-only-0004-of-all-data-on.html

