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Abstract— The emergence of cloud environments has made 

feasible the delivery of Internet-scale services by addressing a 

number of challenges such as live migration, fault tolerance 

and quality of service. However, current approaches do not 

tackle key issues related to cloud storage, which are of 

increasing importance given the enormous amount of data 

being produced in today's rich digital environment (e.g. by 

smart phones, social networks, sensors, user generated 

content). In this paper we present the architecture of a scalable 

and flexible cloud environment addressing the challenge of 

providing data-intensive storage cloud services through raising 

the abstraction level of storage, enabling data mobility across 

providers, allowing computational and content-centric access 

to storage and deploying new data-oriented mechanisms for 

QoS and security guarantees. We also demonstrate the added 

value and effectiveness of the proposed architecture through 

two real-life application scenarios from the healthcare and 

media domains. 

Keywords-Cloud computing; Storage; Data-intensive services 

I.  INTRODUCTION 

Cloud computing offers the potential to dramatically 
reduce the cost of service provisioning through the 
commoditization of IT assets and on-demand usage patterns. 
Virtualization of hardware, rapid service provisioning, 
scalability, elasticity, accounting granularity and cost 
allocation models enable Clouds to efficiently adapt resource 
provisioning to the dynamic demands of Internet users. 
Nevertheless, today’s rich digital environment poses new 
requirements and challenges towards cloud environments: 

mobile devices penetrate the market, cities go digital 
deploying sensors and actuators, users co-develop and co-
innovate (e.g. Wikipedia), social media allow for content and 
experiences sharing. In this context, cloud environments are 
facing a new challenge: the explosion of personal and 
organizational digital data. In the emerging era of the Future 
Internet, the explosion of raw data and the dependence on 
data services is expected to be further amplified due to the 
strong proliferation of data-intensive services and the digital 
convergence of telecommunications, media and ICT.  

The research leading to these results is partially 
supported by the European Community’s Seventh 
Framework Programme (FP7/2001-2013) under grant 
agreement n° 257019 - VISION Cloud Project. 

New data models for storage delivery based on data 
objects with rich, extensible metadata and elaborated access 
methods are emerging, positioning cloud-based 
infrastructures for storage as the next-generation solution to 
address the proliferation and the reliance on data. 
Nevertheless, there are a number of research challenges such 
infrastructures need to address in order to overcome 
limitations related to issues such as mobility, 
interoperability, storage access, security, cost, energy 
efficiency, etc. In this paper we present the architecture of a 
scalable and flexible cloud environment that enables the 
provision of data-intensive storage cloud services, and 
explore the paradigm shift in storage infrastructures driven 
by storage cloud technologies, introducing clear benefits to 
information management and middleware. To realize this 
vision, we have identified five main enablers that are 
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reflected in the proposed architecture. These include: i) 
management of the content through data objects and 
associated metadata, ii) data mobility across providers 
through federation mechanisms and protocols, iii) 
computations performed close to storage through “storlets”, 
iv) simple and efficient access to objects based on their 
content and relationships, regardless of their physical 
location, representation and type, and v) guaranteed quality 
of service and security through enhanced management 
mechanisms (e.g. monitoring and analysis framework).  

The proposed architectural approach not only targets 
(according to the SPI cloud stack [1]) the Infrastructure-as-a-
Service model, which refers to the provision of resources 
(e.g. computational, storage, and networking), but also the 
Platform-as-a-Service model, which refers to the provision of 
a platform and the corresponding services (e.g. monitoring, 
accounting and billing, resiliency mechanisms) to enable the 
offering of cloud-based services. As such, our approach 
addresses aspects that are traditionally handled by 
middleware, for example, the proposed enhancements related 
to data-access methods and data-oriented management 
services (e.g. SLA management), as described in Section IV.  

Furthermore, by changing the interface between 
middleware and storage, our approach to cloud storage offers 
benefits not available from traditional storage. On one hand, 
cloud storage no longer provides traditional guarantees such 
as the POSIX semantics of file systems, or the latency and 
throughput of high-end storage devices. Furthermore, the 
API to storage is changing – data objects are written all at 
once as large blobs of data (via put and get operations), and 
data objects are mostly immutable, namely write-all-at-once 
and read-many. On the other hand, functionality traditionally 
handled by middleware (e.g. by content management 
systems) can now be handled by the cloud infrastructure as 
in the proposed one. The cloud can store an object's metadata 
along with its data, can provide Big Table services over the 
objects and their metadata and in the future may even be able 
to accept schemas over metadata. As a result, the proposed 
approach no longer treats storage in an agnostic manner, and 
when used appropriately this can be leveraged by 
middleware. Furthermore, via “computational storage”, the 
proposed architecture provides a built-in and secure 
environment for computational tasks that are executed close 
to their data and can replace some web services that are 
traditionally provided through web application servers.  

The remainder of the paper is structured as follows: 
Section II introduces the enablers as concepts that allow the 
infrastructure to facilitate and provide data-intensive 
services, as well as presents a short reference to current 
offerings. Section III discusses the proposed infrastructure, 
data model and architecture, while Section IV describes two 
real-life application scenarios from the healthcare and media 
domains to demonstrate the added value and effectiveness of 
the proposed approach. The paper concludes with a 
discussion of future research and potential applications for 
the current study. 

II. ENABLING DATA-INTENSIVE STORAGE SERVICES  

In this section, we describe the main enabling concepts 
that should be supported in an architecture for a cloud 
environment that provides data-intensive storage services.  

A. Raising the abstraction level of storage 

Storage has been accessed traditionally via two main 
types of interfaces: block and file. The low level block 
interface enables basic read and write operations, and treats 
the storage as an unlimited array of raw bytes. The higher 
level file system interface treats storage as containers of 
semantically related bytes, with a directory structure 
relationship among the containers. Modern file systems also 
introduce extended attributes to files as a mechanism to 
associate a limited amount of additional metadata with a file. 
These two data models have been optimized for scale and 
performance.  

Over the last decade a new model of object storage has 
been introduced for access to storage devices [2, 3, 22, 23]. 
This model has been successfully adopted for the cloud, 
replacing the traditional file system and adapting it to cloud 
scale (e.g. [4, 5, 9]). It flattens the tree hierarchy, which is no 
longer relevant, and relaxes semantics and consistency. The 
models that have emerged so far are not very rich with 
respect to metadata, and their security model is weak, 
depending on Access Control Lists (ACLs). They are also 
proprietary.  

We propose a more powerful data model that fits the 
scale of the cloud (in the spirit of the newly emerging 
Storage Cloud standard of CDMI [6]), yet has rich metadata 
and access methods, and supports a strong yet flexible 
security model. This data model is optimized for immutable 
data, maintains a global namespace for the objects, supports 
object versioning, associates system and user metadata (in 
the form of (key,value) pairs) with objects and leverages a 
NoSQL- type table service to provide access to objects 
through this metadata. For example, in addition to the basic 
"put" and "get" operations, it supports List-By(key), and 
List-By(key, value -range) over collections of objects. Future 
extensions could include the association of a schema with the 
user metadata. The metadata allows highlighting the content 
so that it can better fit with the application (the storage cloud 
is no longer agnostic to the data, as in the case for file 
systems and object stores). Furthermore, the proposed data 
model offloads some capabilities that were traditionally 
provided by the middleware layer, to the storage layer. The 
motivation for this is twofold. From the point of view of the 
middleware, there is no longer a need to federate over the 
namespaces of multiple storage repositories or to maintain 
the association between metadata and data in databases 
external to the storage. From the point of view of the storage, 
it enables optimizations not previously attainable, such as 
collocating data and metadata and minimizing data loss by 
keeping the metadata and data under the responsibility of one 
system. Finally, the data model supports a distributed 
security model capable of delegation and federated identity, 
which is key for the cloud.  



B. Data mobility and federation without boundaries  

Virtualization platforms, and cloud infrastructures in 
particular, allow providers and users to rapidly redeploy and 
move resources. While this is beginning to be achievable for 
compute resources today (such as VMs), it is not the case for 
storage and data. In the absence of true data mobility, users 
cannot easily migrate their data across providers and thus 
suffer from data lock-in [8], which is one of the most 
significant obstacles hindering wider adoption of cloud 
services. Data mobility is also fundamental to addressing IT 
evolution and heterogeneity, as data needs to migrate 
between different platforms. Furthermore, this capability is 
also key to federation and interoperability between providers 
and systems.  

In our architecture we propose built-in components to 
address the fundamental technical barriers to data mobility 
and federation, allowing new technologies to overcome these 
barriers. The architecture includes two types of building 
blocks: i) a layer that enables unified access to data across 
storage clouds, and federates sets of data objects maintained 
by users across administrative domains including 
mechanisms for federated security across clouds, and ii) 
built-in network optimizations to move data more efficiently 
and execute data transfers intelligently and securely. One 
such approach is the use of network deduplication, which 
minimizes duplicated data transfer over the network. 
However, as analyzed in [28, 29], a key challenge in this 
approach is to exploit these data reduction techniques while 
preserving privacy and providing proofs-of-ownership 
(PoWs) for the data.  

C.  Computational Storage  

Compute and storage are usually treated as two different 
resources in a decoupled manner. Given that bandwidth is 
neither infinite nor networking costs negligible, for many 
applications it is better to move the computation to the data, 
rather than bring the data to the computation. As the cloud 
model has emerged, this idea of bringing compute to storage 
has been applied for restricted programming paradigms, e.g., 
MapReduce [9], or specifically for key-value storage 
services, e.g., Comet [26]. Also, approaches such as [25] 
study how to utilize resources in a large cluster by executing 
data-parallel programs. We propose a more general paradigm 
that works for every object-based storage repository.  

The primary role of computation in emerging data-
intensive storage environments is to serve data by analyzing, 
refining and transforming it, discovering correlations and 
relations, and reflecting this knowledge back into the data 
through metadata annotations and derived data structures. To 
enable “computational storage”, the proposed architecture 
follows these main principles: i) computations are executed 
close to their data, since the size of an encapsulated 
computation is typically small compared to the size of the 
data it accesses, so generally the computation should be 
moved close to data (ideally co-located so no networking 
resources are consumed), ii) high utilization of cloud 
resources enabling parallelism where appropriate, iii) high-
level control of computations by the users through policies 
without the need to start, stop or manage individual 

computations. For example, computations can be injected 
into the cloud and instructed to analyze all data objects of a 
given type or within a given context (as characterized 
through the data model).  

These principles are reflected in our architecture through 
a programming model for these computational agents, called 
storlets, which were originally introduced in the context of 
digital preservation repositories [24]. Storlets are released 
into the cloud and activated by events on data; they define 
not only the computation, but also triggering conditions 
whereby storlets are activated (e.g. on the access of a given 
object, the creation of a data object with given metadata, and 
the addition of new metadata to an existing object), 
constraints that apply during the storlet lifetime (e.g. 
maximum CPU usage), input and output data objects as well 
as the necessary credentials to access them, and the 
management interface to deal with aspects such as billing 
and accounting.  

A storlet can be very long-lived and be repeatedly 
activated based on its triggering conditions, performing some 
computation, and then becoming passive again. A runtime 
environment schedules and executes a storlet in a sandbox, 
enforcing constraints and mediating between the storlet and 
other platform services, e.g., for accessing, creating and 
modifying the metadata of data objects. The programming 
model subsumes traditional batch-job computations through 
the special case of a storlet for which the triggering condition 
is already met on storlet insertion. Regarding the model for 
fault-tolerance, when a storlet is passive it is treated like a 
data object (i.e., replicated) and when a storlet is active it is 
monitored and upon failure re-executed from its 
checkpointed state when last passive.  

D. Content-centric Access  

Content-centric storage is a new paradigm that enables 
access to a data object through information about its content, 
rather than a path in a hierarchical structure. An application 
does not require any knowledge about the physical location, 
the data store organization, or the place of an object in a 
storage hierarchy, rather it accesses the desired content based 
on the metadata associated with the object. This paradigm is 
similar to content-centric networking [15] and its data-
counterpart CIMPLE [27], but targeted to cloud-scale 
systems. 

Our approach, which builds on the rich data model 
described above in Section II.A, enables an application to 
query for content through various forms of metadata: i) user 
metadata, e.g., describing a data object’s content and ii) 
system metadata, e.g., regarding usage (number of accesses) 
and query history to identify popular or well matched data 
objects. There is also synergy with computational storage; 
user metadata can be extracted by an application-specific 
storlet that asynchronously analyzes a data object and a later 
access can be based on the extracted metadata. Content-
centric access also allows querying content based on key-
value metadata pairs, and other kinds of information 
including object relations (e.g. equivalence and 
subsumption). It supports any domain by allowing the 
definition of domain-specific storage optimizations. 



Furthermore, it scales to the cloud, allowing storage to be 
spread out across multiple clusters and data centers.  

E. Capabilities for Cloud-based Storage  

Although cloud storage as available from providers such 
as Amazon and Google offers useful features such as 
demand-based access to raw storage resources, it is not ready 
to store the critical data of individuals, businesses and 
governments with the required reliability and QoS as 
evidenced, for example by the rudimentary SLA of Amazon 
S3 [5, 12]. We are developing technologies necessary to 
close these gaps, addressing aspects of QoS and security 
assurance as required for business critical and sensitive 
applications while building a cloud infrastructure that 
continues to maintain the cloud spirit (e.g. virtualization, 
pay-per-use, scalability). Current cloud storage providers 
offer SLAs that guarantee service availability and give 
service credit or refunds for lack thereof [12, 17, 18], but do 
not address data availability and protection. In research an 
architecture and protocol for an SLA-based trust model for 
cloud computing [19], and approaches for managing the 
mappings of low-level resource metrics to high-level SLAs 
[20, 21] have been proposed. 

Architectural challenges include: supporting multi-
tenancy, where a massive number of users share the same 
storage infrastructure, guaranteeing secure and authorized 
access to the data and services, and providing tools for 
checking compliance with standards and regulations. In 
addition, given the scale, management of the storage cloud 
needs to be as automatic as possible, e.g., requiring the 
automatic placement of data, and automated provisioning 
and operation of the underlying storage. Furthermore, the 
architecture must provide hooks for accounting and billing of 
the storage services to be used for measuring, charging and 
reasoning about their cost. It also requires an advanced 
monitoring mechanism, going beyond a simple messaging 
system to aggregating, applying rules and extracting valuable 
information from the analysis, and to being modular, i.e., 
allowing new sources of information to be included as the 
need arises. Monitoring in cooperation with an advanced 
SLA management framework (which among others, take into 
consideration content-related terms) enables proactive SLA 
violation prevention.  

F. Current offerings  

The most notable commercial cloud storage services 
include Amazon S3 [5], Windows Azure Blob Service [13], 
EMC Atmos [7] and Google Storage for Developers [14], 
which do not fully realize the enablers discussed in Section 
II. Starting from the data models, they are basic. Amazon S3, 
Google Storage, and the Windows Azure Blob Service allow 
associating user metadata in the form of key value pairs with 
objects and blobs, but they simply store the metadata and 
pass it back. EMC Atmos has a slightly richer model; it 
allows some of keys (called tags by Atmos) to be listable; 
this enables retrieving the objects that have a specific tag. 
The support for federation does not exist or is limited and 
requires homogeneity. Amazon S3, Google Storage and the 
Windows Azure Blob Service do not have any support for 

federation. EMC Atmos allows federating data in an Atmos 
system in a customer data center with the customer's data in 
a cloud, provided it is also implemented with Atmos. No 
current cloud storage offering provides computational 
abilities as an integral part of the cloud storage system to the 
best of our knowledge. Access to an object is solely through 
its name with Amazon S3, Google Storage and the Windows 
Azure Blob Service. As mentioned above, EMC Atmos has a 
slight richer access capability through its listable tags. But no 
current cloud storage system has a rich flexible access to 
storage based on its content and relationships. Finally, the 
QoS mechanisms and SLAs provided by current offerings 
are very basic. In our approach, models, requirements and 
SLA schemas are expressed not only on storage resources 
and services, but also on the content descriptions for the 
underlying storage objects, in support of content centric 
storage. 

III. STORAGE CLOUD ENVIRONMENT 

In this section we present the underlying infrastructure, 
the data model and the architecture of the proposed storage 
cloud environment that addresses the challenges and realizes 
the concepts presented in the earlier sections. 

A. Infrastructure  

The storage cloud is built on an infrastructure that 
consists of multiple data centers, each of which may have 
one or more storage clusters containing physical compute, 
storage and networking resources. The data centers are 
connected by a dedicated network. The minimum bandwidth 
for inter-data center links is 1GB.  

A storage cluster is composed of storage rich nodes 
constructed from commodity hardware and connected by 
commodity interconnect. As common for cloud 
infrastructures, the storage cloud is built from low cost 
components, ensuring reliability in the software, and 
building advanced functionality on top of this foundation. 
For example, given today's hardware, the initial hardware 
configuration for the nodes could be 4 or 8 way 
multiprocessors (taking multicore into account) with 12 to 16 
GB of RAM. Each node could have 12 to 24 high capacity 
direct attached disks (e.g. 2TB SATA drives). The cluster 
interconnect is 1GB at a minimum. The architecture, design 
and implementation should support a system with hundreds 
of storage clusters, where each storage cluster can have 
several hundred nodes and the storage clusters are spread out 
over dozens of data centers.  

B. Data Model  

The data model extends the emerging cloud object 
models (e.g. S3 [5], Atmos [7] and CDMI [6]). At the heart 
of the proposed data model is the data object. A data object 
contains data of arbitrary type and size, and has a unique 
identifier that can be used to access it. Conceptually an 
object is fixed content - it is written as a whole and cannot be 
partially updated in byte ranges, but it can be partially read. 
An object may be overwritten, in which case the whole 
content of the object is replaced. Versioning is supported and 
when it is enabled, the system retains the previous version of 



the object. Data objects are contained in containers. There is 
no nesting or hierarchy of containers. Each data object 
resides within the context of a single container. Containers 
serve several purposes:  

 Data management. Containers group related data 
objects. Policies are set on a container and applied to 
all objects in it, e.g., whether the objects in the 
container are versioned.  

 Isolation. Containers divide the namespace at the 
highest level, and provide isolation among objects 
between containers.  

 Internal management. Containers are the unit of 
placement. This reduces the frequency of global 
placement decisions, reduces the size of location 
information that has to be retained globally, and 
helps in routing client requests efficiently to the right 
cluster in the cloud.  

Two categories of metadata are associated with a data 
object: user metadata and system metadata. The user 
metadata is set by the user and contains information about 
the object. Its meaning and context are transparent to cloud 
storage system. However, the system does recognize the 
format of the user metadata and enables queries based on its 
content. A common format for user metadata is a list of 
name-value string pairs. A client can also use other formats 
and indicate the format through a XML schema. In contrast 
to user metadata, system metadata has concrete meaning to 
the cloud storage system. It either directs the system how to 
deal with the object (e.g. access control, reliability, 
performance requirements), or it provides system 
information about the object (e.g. size, creation time, last 
access time) to the user.  

Updating the metadata for an object is possible without 
updating the actual data; in particular, a new metadata field 
can be added or an existing metadata field can be updated 
without updating the other fields. On the other hand, the user 
cannot update the data of an object without updating its 
metadata, i.e. when the data of an object is overwritten all of 
its metadata must also be replaced.  

Regarding metadata and data retrieval, a user can retrieve 
the whole object, both its metadata and data, at the same 
time. In this case the system guarantees strong consistency 
between the object version and the metadata, i.e. the 
metadata returned is the metadata that belongs with that 
version. A user can also retrieve the metadata for an object 
without retrieving its data.  

Containers have metadata associated with them. This 
metadata can be user metadata or system metadata as 
described earlier for objects. Naturally, containers have a 
different set of system metadata items, for example, a quota.  

 Besides the metadata for objects and containers, we 
extend the data model to include computation on the data 
objects, which is performed (executed) within the cloud 
storage environment. As mentioned in Section III.C, 
computations are performed through storlets that are 
triggered according to specific events.  

Objects may be replicated across multiple clusters and 
data centers. The degree of replication and placement 
restriction policies are defined and associated with the 

object's container. We employ a symmetric replication 
mechanism, where any operation on an object can be 
handled at any of its replicas. The consistency model for 
updates to both objects and their metadata is eventual 
consistency [30]. A storlet, when triggered, is executed once, 
usually at the site where the triggering condition first 
occurred. 

The account model includes tenants and users. A tenant 
is an organization that subscribes to storage cloud services. A 
tenant may represent a commercial firm, a governmental 
organization, or any other organization or group of persons. 
A user is the entity that actually uses the storage services. 
The term “user” may refer to a person or to an application. A 
user belongs to exactly one tenant, although a person could 
own a user account in more than one tenant. A user has a 
unique identifier within its tenant and has credentials 
allowing it to authenticate itself. A user may create 
containers and data objects in them. Ownership of a 
container is assigned to a user within the tenant. Ownership 
of a data object is assigned to a user within the tenant to 
which the object’s container belongs (typically but not 
necessarily the container’s owner).  

C. Architecture  

 We conceptualize the architecture in two dimensions. In 
the first dimension, the architecture has a logical separation 
between data-related operations (e.g. adding, changing and 
deleting data) and management operations (e.g. service 
provisioning and monitoring). In the second dimension, each 
of these has an external access / interface layer that provides 
access to users and applications, and an internal operating 
layer that executes these external requests as well as 
autonomous operations such as dynamic optimizations, load 
balancing, and monitoring. Schematically, these dimensions 
provide a layered foundation for the architecture. 

Figure 1 presents a high-level view of the architecture 
including the interfaces towards applications, users and 
administrators, the layers of the architecture and the 
interactions between the layers. The architecture introduces 
two complementary services, the Data Service and the 
Management Service, which together provide the functions 
of a cloud for data-intensive services. The Data Service, 
including the Data Access Layer (DAL) and the Data 
Operating Layer (DOL), enables manipulation of data 
objects and their metadata, computation on storage, mobility, 
availability, reliability and security. The DAL provides 
unified interface to data across the clusters of a cloud, and 
encapsulates the DOL which realizes the data service over a 
set of distributed heterogeneous physical resources. 

The Management Service, including the Management 
Interface Layer (MIL) and the Management Operating Layer 
(MOL), enables service provisioning and monitoring, 
accounting and billing, security management and 
transformation of user-specified service level requirements to 
management operations on the underlying infrastructure 
level. This service is also distributed across the clusters of a 
cloud. The MIL, just like the DAL, provides a unified 
interface to management of services across the clusters of a 
cloud, and encapsulates the MOL which realizes the 



management service over a set of distributed heterogeneous 
physical resources. The MIL deploys management models 
that translate business level objectives into operating level 
settings and tasks. 

 

  
Figure 1.  Layers, roles and interfaces in the architecture 

The realization of the layers is distributed. For example, 
an object may be stored in one cluster and accessed through 
a request addressed to a second cluster. The DAL in the 
second cluster finds the target cluster on which the object 
resides, and transparently redirects the request to it. 
Furthermore, the implementation of the layers is highly 
distributed and parallel; the same software stack runs on 
every server of a cluster, and many client operations carried 
out in parallel on each server. 

The architectural separation between the data and 
management services is inspired by the unique service model 
of the storage cloud. In compute clouds, the management 
service is used to provision and manage compute resources, 
which interact with external entities as defined by the service 
provider. The storage cloud is different - once the storage 
resources are provisioned, they may be used by different, 
independent service consumers through cloud storage APIs, 
with different characteristics and requirements on latency, 
throughput, availability, reliability, consistency, etc. The data 
service and the management service are designed to be 
separate and independent in order to facilitate this 
differentiation and provide the flexibility required to enable 
the innovations mentioned earlier. 

In the remainder of the section we provide more details 
on the layers. First, though, we describe the Global View, 
which provides common services accessed by all four layers. 
It is a cloud-wide service that runs on representative nodes in 
each of the clusters composing the storage cloud and must be 
highly available, despite possible node, cluster and data 
center failures, and partitions between clusters/data centers. 
It consists of three services: the Global Catalog, the Resource 
Map and the User Service. The Global Catalog maps from 
container name to the clusters where the container's replicas 
reside and also holds container metadata. The Resource Map 
holds an inventory of cloud resources: the location of 
clusters, the distances and bandwidth between clusters, and 
the resources available in each cluster. The User Service 
holds information about tenants, users and authentication.  

1) Data Access Layer  

The primary interaction point for applications and clients 
of the storage cloud is the Data Access Layer, which 
provides access to the content across the clusters of the 
underlying infrastructure. It includes: i) security components 
for access control (authentication and authorization), and ii) 
content-centric access components to translate complex 
storage requests from the application into basic queries on 
the underlying store in the DOL. The components are 
passive and act upon request. A pipelined design enables 
parallel processing across the underlying resources, so that 
the translation of the content-centric requests and the 
handling of the resulting queries to the DOL can be 
decoupled, thereby enabling the optimal assignment of 
processing resources.  

Figure 2 shows the technical organization of the DAL. It 
depicts the components and the interactions between them.  

The Request Handler processes incoming requests and 
implements basic performance and scalability features with 
regard to the distribution of the system. It interacts with 
Secure Access Control to authenticate and authorize a 
request, and passes the request to the proper component of 
the DAL for handling. 

The Content-Centric Service translates complex queries 
posed via its rich query API into basic metadata queries on 
the key-value pairs associated with the objects. Employing a 
cloud paradigm for application design, the translation 
processing and the derived query operations are designed in 
an asynchronous and parallelizable way. Using an inverted 
half-sync-half-async pattern approach, queries are received 
from the application in a synchronous manner, while 
internally queries are issued asynchronously to the internal 
storage subsystem. This approach allows rearranging internal 
queries according to complexity, priority or other criteria. 
For this purpose the DAL and DOL are connected via an 
asynchronous communication component. 

 

 
Figure 2.  Data Access and Data Operating Layers 

Secure Access Control provides authentication and 
authorization for requests. It interacts with the User Service 
of the Global View in order to obtain data related to users 
and access control.  



2) Data Operating Layer  
The objective of the Data Operating Layer is to provide 

the core object services. It acts as a “middle” layer between 
the DAL functionality and the storage itself. It supports both 
the data model and the other features of the proposed 
architecture such as an execution environment for storlets, 
data mobility and queries on metadata for content centric 
storage. The DOL is highly scalable and continuously 
available, and also provides hooks for management (e.g. for 
controlling QoS).  

The technical organization of the DOL is shown in 
Figure 2. The components of the DOL are cluster-wide 
services that are highly distributed and have representatives 
that run on each node of a storage cluster. We describe them 
below. 

The Object Service orchestrates the execution of DOL 
operations by interacting with the DOL's other components, 
e.g., for a put operation on an object, it checks authorization 
through the Access Enforcer, stores the object's data in the 
Storage Manager, stores the object's metadata in the 
Catalog, replicates the object through the Replication 
Manager, and notifies Storlet Execution that the put has 
occurred.  

The Catalog is a cluster-wide service that stores the 
metadata for each object residing in its cluster. It provides an 
efficient mapping from an object's name to its storage 
location in the cluster and its metadata. It also provides query 
operations over the objects in a container, such as query by 
key name (return all objects that have a particular key in 
their metadata) and query by key name and value range 
(return all objects that have a value within a particular range 
for the key). These queries are essential to the 
implementation of content-centric storage. The Catalog also 
stores state that needs to be shared across a cluster, for 
example the internal state of the Replication Manager. The 
Catalog is implemented using Cassandra, a distributed 
column-oriented NoSQL database.  

The role of the Replication Manager (RM) is to replicate 
data across the clusters of the system to the required degree 
of resiliency both during regular operation and failure 
recovery. During regular operation, the RM is called by the 
Object Service when containers or objects are created, 
deleted or updated. It is responsible for ensuring that the new 
state which results from such an operation is replicated to all 
other clusters where the corresponding container/object 
resides. In failure cases, the RM is invoked in order to 
restore containers or objects to the desired level of resiliency. 
The RM replicates both data and metadata across clusters. It 
is not responsible for the replication of object metadata 
within a cluster (this is handled by the Catalog),  

The Storage Manager encapsulates the underlying 
storage system, providing storage for object data and also for 
the Catalog. It could employ a distributed file system or it 
could use the local file system on each server in the cluster.  

Storlet Execution receives event notifications from the 
Object Service and triggers the appropriate storlet. Storlet 
Execution provides an execution environment for storlets: it 
stores references to passive storlets (storlets that are not 
currently active and stored as data objects); it activates 

storlets that have been triggered; and it runs active storlets in 
a sandbox that safely controls access to their resources, while 
it also monitors them. When a storlet is first stored into the 
DOL as a data object, Storlet Execution is also responsible 
for preparing it for execution, e.g., putting it in a passive 
state and setting up its triggers.  

The Access Enforcer is the component that enforces the 
access control decisions at the DOL layer. For example, 
during the storlet execution it is contacted to validate the 
permissions of the storlet to perform the desired operations. 

3) Management Interface Layer  
The Management Interface Layer provides APIs and 

interfaces for management, e.g., container management, 
account management, SLA management, and accounting and 
billing.. Through the MIL, users can also develop models 
including metadata associated with the storage resources, the 
service characteristics, the usage, the service requirements, 
etc. These models govern the operation of the MOL. 
Authentication and authorization mechanisms allow the 
various users of the platform to access the management 
mechanisms, while adhering to the compliance requirements. 
Figure 3 shows the main components of the MIL. 

Tenant and User Management allows the creation and 
deletion of tenants and users as well as defining roles for 
users (e.g. customer or administrator). This information is 
captured in the User Service of the Global View. Through 
this component, a cloud administrator is able to create 
tenants, a tenant administrator is also able to create users that 
belong to it and have access to the cloud services to which 
the tenant has subscribed. Moreover, a tenant administrator is 
able to define the different roles a user may have for 
accessing different services. 

SLA Management provides an interface to the SLA 
management framework residing in the MOL. Users can 
request an SLA template regarding specific services the 
platform offers, create an SLA request by setting specific 
quality parameters in a template, sign an SLA and receive 
notifications with regard to SLA violations. 

Container Management allows users to create and delete 
containers, and update container metadata. It also allows a 
user to list the containers belonging to a specific tenant or 
user. 

Model Development provides an interface to construct 
management models. A model incorporates various kinds of 
information, such as object metadata, resource and service 
related information, usage related data, requirements, and 
SLA-related information. Models express the importance of 
data (an object or set of objects) and a resource in 
comparison to others, and efficiently provide input to 
decision making and placement mechanisms, as well as 
contribute to better resource allocation and power 
management by the MOL. 

Accounting and Billing collects raw resource usage 
metrics (e.g. capacity, bandwidth, CPU utilization, number 
of storage operations, number of objects, replication level, 
number of executed storlets) and SLA violation events. For 
each tenant it tallies resource usage and compensates for 
SLA violations in order to calculate a monetary amount, 
according to a tenant-specific billing and pricing scheme. 



This component also provides user-level accounting to a 
tenant, so that a tenant can bill its own users. 

 

 
Figure 3.  Management Interface and Management Operating Layers 

Compliance checks operation logs and flags compliance 
violations, notifying the system administrator that they have 
occurred. It takes into consideration compliance to EU 
directives such as 2002/58 (personal data circulation), 
2006/24 (retention of data and public communications 
networks).  

4) Management Operating Layer  
The Management Operating Layer provides management 

services for the proposed cloud environment. It consists of 
two parts: a cloud-wide view that has access to usage patterns 
across all data centers and clusters and makes decisions at 
the cloud level, and a cluster view that has a view of usage 
patterns within its cluster and makes decisions at the cluster 
level. Thus, the decision making process of the MOL's 
components is hierarchical: first a decision is made at the 
cloud level, e.g., choosing the storage clusters where data 
will be placed; and then a corresponding decision is made at 
the cluster level, e.g., to decide on which server to place the 
data. Figure 3 shows the components of the MOL.  

A Knowledge Base stores statistics and history 
information with regard to previous management decisions. 
There is a knowledge base in the cluster view for each 
cluster and in the cloud view for the cloud. 

Monitoring collects data from the DOL as well as from 
the infrastructure through low-level probes, and aggregates 
and distributes monitoring information across the clusters 
and across the cloud.  

Analysis analyzes the monitoring data in order to find 
correlations among the various metrics, and to discover 
usage patterns per container/user/tenant, such as periodic 
bursts or performance degradations. The usage models 
discovered are stored in the appropriate Knowledge Base. 
Analysis consumes the data provided by the monitoring 
component and stored in the Knowledge Bases (where 
monitoring data is aggregated) and delivers the outcome of 
its analysis to the Evaluator and to the appropriate 
Knowledge Base (cluster or cloud level).  

SLA Management consumes the analyzed monitoring 
data in order to enable the proactive prevention of SLA 
violations. It takes into account specific SLA terms as well 
as policies that may be set by an administrator (e.g. create an 
additional replica in case of a given increase in user requests) 
and through the Evaluator pro-actively triggers events to 
prevent SLA violations. A novel aspect of SLA Management 
are content-related terms in order to support policies 
regarding content-centric access. 

The Evaluator receives information from two sources: i) 
management components (e.g. SLA management) regarding 
configuration parameters (e.g. a monitoring threshold), and 
the ii) analysis component. Based on this information, the 
Evaluator generates events and propagates them to the 
appropriate management component to perform actions 
accordingly.  

Placement places both data and storlets. For data it 
decides on which clusters to place the replicas of a container, 
and for storlets it finds the appropriate resources for their 
execution. It takes into account constraints such as locality 
(e.g. proximity of a container replica to its users), 
compliance (e.g. data cannot leave the borders of a certain 
country), and resiliency (e.g. the number of copies and their 
placement in order to achieve a certain level of reliability). 
Regarding storlets, there is an intrinsic relationship between 
the placement of an object and the storlets that run on it. For 
example, there is a performance trade-off between choosing 
powerful or less loaded compute nodes for faster storlet 
execution and minimizing the cost of data transfer by placing 
the storlet closer to its data. 

IV. VALIDATION CASES 

We present two real-life application scenarios from the 
healthcare and media domains to demonstrate the added 
value and the effectiveness of the storage cloud architecture.  

A. Healthcare  

This scenario focuses on personalized healthcare, which 
is a patient-centric view of all healthcare activities, related 
data and services. A patient's healthcare data is stored and 
used either by the patient or by one of his/her healthcare 
providers. Third party applications may also access a 
patient's data to provide services to the actors in the scenario. 
Moreover, healthcare data is commonly stored according to 
complex standards such as HL7, DICOM or OpenEHR. 
These standards provide exact descriptions of medical 
information while at the same time allowing healthcare 
systems and medical devices to interoperate reliably and 
precisely. Based on the above, the personalized healthcare 
scenario poses requirements on storage cloud environments 
that are met through the enablers and architecture described 
in this paper:  

1. The ability to store all patient-related data as native 
and immutable objects and make these objects and the 
relationships between them accessible as a data service. Here 
content-centric access supports relationships and access to 
the objects based on their relationships. Storlets provide the 
means to transform data to required formats, and extract and 
associate appropriate metadata. Current storage offerings do 



not provide such content-centric or storlet functionalities and 
therefore application specific services, responsible for 
maintaining these relationships, need to be deployed.  

2. The ability to hide the complexity of healthcare data to 
developers and support them to supply the data as a service, 
while securing the data and providing an utmost level of 
privacy for the patient. Here the metadata and content-centric 
capabilities ease the task of organizing and retrieving 
medical data. Furthermore, storlets enable healthcare 
applications to efficiently perform complex transformations, 
aggregations and analysis on masses of healthcare data 
without downloading the data to an application's local 
storage or needing to deploy VMs that contain the necessary 
applications, as would be the traditional way in present 
Clouds. In addition to reducing bandwidth requirements, our 
approach has the additional benefit that it makes it easier to 
protect data against unauthorized use.  

3. The ability to provide data to users according to their 
roles and context (e.g. doctors, patients, online medical 
service providers, researchers, pharmaceutical companies). 
Here, again storlets can adapt the view of the data based on 
the user's role, e.g., a storlet anonymizes data before 
providing access to researchers.  

B. Media  

This scenario focuses on professional media management 
in media production. Established media production 
workflows need to evolve to be more flexible and 
interoperable with standard IT. A starting point is the output 
of a typical media generation device (e.g. a camcorder) or 
tape-based media storage in the form of an MXF file. MXF 
is the SMPTE standard specifying the file format for 
exchange of audiovisual material between professional 
devices. An MXF file can contain several Material objects, 
each of which is an aggregation of audio and video Tracks. 
Each Track can be further decomposed into Sequences, each 
of which has a pointer to the actual "Essence" (i.e., the audio 
and/or video stream whose rendering generates the output 
material). Such a data structure, nowadays, is actually hidden 
inside the file and only dedicated software stacks are able to 
use it in practice. Based on the above the media production 
scenario poses requirements on storage cloud environments 
that are met through the enablers and architecture described 
in this paper:  

1. The ability to avoid vendor lock-in and overcome the 
lack of interoperability between different devices. Here, the 
data model allows MXF material to be uploaded and 
represented as Material, Track, Essence objects, where 
metadata records the relationships between them, and 
content-centric access allows flexible ways to access the 
uploaded data. This enables a standard way of storing and 
accessing media content. 

2. The ability to access, manipulate and manage material 
structure at the storage level. Here content-centric access 
allows easy browsing of the content based on its natural 
structure. Storlets can provide processing capabilities such as 
feature extraction and transcoding without the need to 
download the content. They can also provide the ability to 
extract shot and keyframe information. Overall, the ability to 

provide storlets allows higher-level application stacks to be 
thinner and easier to manage and interchange, similar to the 
case of healthcare discussed earlier. 

3. The ability to allow users to interact with the content in 
order to “characterize” it with the use of tags and metadata. 
Here, again, the rich data model and content-centric access 
are a very good fit for media. While this functionality is 
already present in many web applications, it is application 
specific. In VISION Cloud it is supported in a generic 
fashion in storage and can be tailored for any application.  

V. CONCLUSIONS 

A representative figure highlighting the huge amount of 
data currently being produced is the fraction of data on the 
Internet that is indexed by Google, which is only 0.004% 
[16]. In this context one of the main challenges in cloud 
environments is the management of the data being produced 
by various sources (e.g. sensors, cameras), and also by 
people (i.e., user generated content). Management refers not 
only to storing but also to accessing these data, moving data 
across providers, performing computational tasks on data, 
and addressing issues related to security, quality of service, 
costs. In this paper we presented the architecture for a 
scalable and flexible cloud environment that is being 
developed by the VISION Cloud EU-funded research 
project. The architecture addresses the challenge of 
providing data-intensive storage cloud services through 
raising the abstraction level of storage, enabling data 
mobility across providers, allowing computational and 
content-centric access to storage and deploying new data-
oriented mechanisms for QoS and security guarantees. We 
have also demonstrated the added value and effectiveness of 
the proposed architecture through two real-life application 
scenarios from the healthcare and media domains. 
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