

Best Practices for Oracle
on Pure Storage

The First All-Flash Enterprise Storage Array

© Pure Storage 2011 | 2

Overview

The principle difference between configuring database storage on a Pure Storage FlashArray™ instead
of spinning disks is that virtually all of your architecture choices are centered around manageability,
not performance. Specifically, none of the following factors are relevant on a Pure Storage array:

• Stripe width and depth

• RAID level (mirroring)

• Intelligent Data Placement (short stroking)

• O/S and database block size

• ASM vs. File System

Striping refers to distributing files across multiple hard drives to enable parallelized access and to
maximize IOPS. A Pure Storage array consists of 22 solid state disks per shelf, and the Purity
Operating Environment automatically distributes data across all drives in the array using an algorithm
designed to optimize performance and provide redundancy. In other words, the striping is automatic.

The Pure Storage redundancy technology is called RAID-3D, and it is designed specifically to protect
against the 3 failure modes specific to flash storage: device failure, bit errors, and performance
variability. No other form of RAID protection is needed so you don’t need to compromise capacity or
performance for data protection. RAID is automatic.

Just as striping and mirroring are irrelevant on a Pure Storage array, so is block size. Pure Storage is
based on a fine-grained 512-byte geometry, so there are no block alignment issues as you might
encounter in arrays designed with, for example, a 4KB geometry. Another benefit is a substantially
higher deduplication rate than seen on other arrays offering data reduction.

Other flash vendors have architected their solution around the new Advanced Format (AF) Technology
which allows for 4KB physical sector sizes instead of the traditional 512B sector size. But since solid-
state disks don’t have sectors or cylinders or spindles, The Purity Operating Environment is designed
from the ground up to take advantage of flash’s unique capabilities. The benefit to the user is that you
can realize the benefits of flash performance without being shackled to any of the constraints of the
disk paradigm.

In this document we provide information to help you to optimize the Pure Storage FlashArray™ for your
Oracle database workload. Please note that these are general guidelines that are appropriate for
many workloads, but as with all guidelines you should verify that they are appropriate for your specific
environment.

!

© Pure Storage 2011 | 3

Operating System Recommendations

Pure Storage has operating system recommendations that apply to all deployments: databases, VDI,
etc. These recommendations apply whether you are using Oracle Automatic Storage Management
(ASM), raw devices or a file system for your database storage.

Multipath Configuration

Always use multipathing on a Pure Storage FlashArray™. Our all-purpose configuration (tested on
RHEL 6.3 and Ubuntu 11.04) is as follows:

/etc/multipath.conf :

defaults {
 polling_interval 1
}

devices {
 device {
 vendor "PURE"
 path_selector "round-robin 0"
 path_grouping_policy multibus
 rr_min_io 1
 path_checker tur
 fast_io_fail_tmo 10
 dev_loss_tmo 30
 }
}

The settings assigned to “PURE” devices are explained here:

Parameter Meaning

polling_interval 1 Specifies the frequency (in seconds) to check that each path is alive.

vendor “PURE” Applies these settings to PURE devices only.

path_selector “round-robin 0” Loop through every viable path. This setting does not consider path queue length or
service time.

path_grouping_policy multibus Places all paths in a single priority group. This setting ensures that all paths are in
use at all times, preventing a latent path problem from going unnoticed.

rr_min_io 1 Sends 1 I/O to each patch before switching to the next path. Using higher numbers
can result in inferior performance, as I/O bursts are sent down each path instead of
spreading the load evenly.

path_checker tur “tur” uses the SCSI command Test Unit Ready to determine if a path is working. This
is different from the default RHEL setting of readsector0/direction. When a Pure
Storage array is failing over read operations will not be serviced, but we should
continue to respond to Test Unit Ready. This setting keeps multipath from
propagating an I/O error up to the application even beyond the SCSI device timeout.

fast_io_fail_tmo 10 Specifies the number of seconds the SCSI layer will wait after a problem has been
detected on a fibre channel port before failing I/O to devices on that remote port.
This setting should be less than dev_loss_tmo.

dev_loss_tmo 30 Specifies the number of seconds the SCSI layer will wait after a problem has been
detected on a fibre channel remote port before removing it from the system.

© Pure Storage 2011 | 4

SCSI Device Settings

For optimum performance, we also recommend the following device settings.

1. Set the block device scheduler to [noop]. This setting avoids wasting CPU resources on I/O
scheduling. The default value is [cfq] (completely fair queuing).

2. Set rq_affinity to 2. This setting avoids interrupt contention on a particular CPU by scheduling
I/O on the core that originated the process. The default behavior is to schedule processes
on the first core in a package unit which tends to lock cross calls on 1 or 2 cores (equal to the
number of sockets in your system).

3. Set add_random to 0. This setting reduces CPU overhead due to entropy collection (for
activities such as generating ssh keys).

You can effect these settings either manually (not recommended but ok if LUNS are already in use with
different settings) or automatically.

Manually set the scheduler:

for disk in `lsscsi | grep PURE | awk '{ print $6 }'`
do

echo noop > /sys/block/${disk##/dev/}/queue/scheduler
done

Manually set rq_affinity:

for disk in `lsscsi | grep PURE | awk '{ print $6 }'`
do

echo 2 > /sys/block/${disk##/dev/}/queue/rq_affinity
done

Manually set add_random:

for disk in `lsscsi | grep PURE | awk '{ print $6 }'`
do

echo 0 > /sys/block/${disk##/dev/}/queue/add_random
done

We recommend using udev to make these settings automatic across reboots and any other udev
triggering event, such as a drive replacement. The recommended rules file is as follows:

Recommended settings for Pure Storage FlashArray.

Use noop scheduler for high-performance solid-state storage

ACTION=="add|change", SUBSYSTEM=="block", ENV{ID_VENDOR}=="PURE",
ATTR{queue/scheduler}="noop"

Reduce CPU overhead due to entropy collection

ACTION=="add|change", SUBSYSTEM=="block", ENV{ID_VENDOR}=="PURE",
ATTR{queue/add_random}="0"

© Pure Storage 2011 | 5

Schedule I/O on the core that initiated the process

ACTION=="add|change", SUBSYSTEM=="block", ENV{ID_VENDOR}=="PURE",
ATTR{queue/rq_affinity}="2"

Save this file as

• /etc/udev/rules.d/99-pure-storage.rules [RHEL 6.x]

• /lib/udev/rules.d/99-pure-storage-rules [Ubuntu]

You can activate the udev rules with:

 udevadm trigger

Process Prioritization and Pinning

The log writer (ora_lgwr_{ORACLE_SID}) is often a bottleneck for extremely heavy OLTP workloads
since it is a single process and it must persist every transaction. A typical AWR Top 5 Timed
Foreground Events report might look like this:

If your AWR report shows high waits on LOG_FILE_SYNC or LOG_FILE_PARALLEL_WRITE, you can
consider making these adjustments. However, do not do so unless your system has eight or more
cores.

To increase log writer process priority:

• Use renice

• E.G. if log writer process id is 27250: renice –n 20 27250

• Probably not adviseable if your system has few than eight cores

To pin log writer to a given core:

• Use taskset

• E.G. if log writer process id is 27250: taskset –p 1 27250

• Probably not adviseable if you have fewer than 12 cores

We have found that the Pure Storage FlashArray™ can sustain redo log write rates over 100MB/s.

© Pure Storage 2011 | 6

Provisioning Storage on the Pure Storage FlashArray™

You can provision storage from either the Pure Storage GUI management tool, or the command line,
as illustrated here.

1. Create a volume using either the GUI or CLI

!
Command line equivalent:

purevol create –size 250G oravol10!
!

!

© Pure Storage 2011 | 7

2. Connect the volume to the host

!
Command line equivalent:

purevol connect --host warthog oradata10
!

3. Scan the new volume on the database server (as root):

rescan-scsi-bus.sh -i –r

4. Flush any unused multipath device maps (as root):

multipath –F

!

© Pure Storage 2011 | 8

5. Detect and map the new volume with multipath (as root):

multipath –v2

Note the new volume’s unique device identifier (UUID) which is the same as the Serial number seen in
the Details section of the GUI. In this case it’s 3624a9370bb22e766dd8579430001001a

!
At this point, the newly provisioned storage is ready to use. You can either create a file system on it,
or use it as an Automatic Storage Management (ASM) disk.

!

© Pure Storage 2011 | 9

ASM versus File System

On a Pure Storage FlashArray™, there is no significant performance benefit to using ASM over a
traditional file system, so the decision can be driven by your operational policies and guidelines.
Whichever storage mechanism you choose will perform well. From a DBA’s perspective, ASM does
offer additional flexibility not found with file systems, such as the ability to move ASM disks from one
disk group to another, resizing disks, and adding volumes dynamically.

Recommendations Common to ASM and File System

Unlike traditional storage, IOPS are not a function of LUN count. In other words, you get the same
IOPS capacity with 1 LUN as you do with 100. However, since it is often convenient to monitor
database performance by I/O type (for example, LGWR, DBWR, TEMP), we recommend creating ASM
disk groups or file systems dedicated to these individual work loads. This strategy allows you to
observe the characteristics of each I/O type either at the command line with tools like iostat and
pureadm, or with the Pure Storage GUI.

In addition to isolating I/O types to individual disk groups, you should also locate the flash recovery
area (FRA). We also recommend opting for a few large LUN’s per disk group.

If performance is a critical concern, we also recommend that you do not multiplex redo logs. It is not
necessary for redundancy since RAID-3D provides protection against media failures. Multiplexing redo
logs introduces a performance impact of up to approximately 10% for a heavy OLTP workload. If your
operations policy requires you to multiplex redo logs, we recommend placing the group members in

© Pure Storage 2011 | 10

separate disk groups or file systems. For example, you can create 2 disk groups, REDOSSD1 and
REDOSSD2 and multiplex across them:

alter database add logfile group 1 ('+REDOSSD1', '+REDOSSD2') size 2g;

SELECT g.name groupname, d.path, g.sector_size, g.block_size, g.state
FROM v$asm_diskgroup g, v$asm_disk d
WHERE d.group_number = g.group_number
AND g.name LIKE '%REDOSSD%'
ORDER BY g.name;

 Sector Block
Group Name Path Size Size STATE
---------- --------------- ------ ----- -----------
REDOSSD1 /dev/dm-3 512 4096 CONNECTED
REDOSSD2 /dev/dm-28 512 4096 CONNECTED

2 rows selected.

Finally, while some flash storage vendors recommend a 4K block size for both redo logs and the
database itself (to avoid block misalignment issues), Pure Storage does not. Since the Pure Storage
FlashArray™ is designed on a 512 byte geometry, we never have block alignment issues. Performance
is completely independent of block size.

ASM Specific Recommendations

In Oracle 11gR3 the default striping for ONLINELOG template changed from FINE to COARSE. In OLTP
workload testing we found that the COARSE setting for redo logs performs about 20% better. Since
the Pure Storage FlashArray™ includes RAID-3D protection, you can safely use External Redundancy
for ASM diskgroups. Other factors such as sector size and AU size do not have a significant bearing
on performance.

ASM Disk Group Recommendations

Disk
Group

Sector
Size Strip

AU
Size Redundancy Notes

ORACRS 512 COARSE 1048576 External Small disk group
for CRS

ORADATA 512 COARSE 1048576 External Database
segments

ORAREDO 512 COARSE 1048576 External Redo logs

ORAFRA 512 COARSE 1048576 External Flash Recovery
Area

!

© Pure Storage 2011 | 11

ASM Space Reclamation

As you drop, truncate or resize database objects in an ASM environment, the space metrics reported
by the data dictionary (DBA_FREE_SPACE, V$ASM_DISKGROUP, V$DATAFILE, etc.) will reflect your
changes as expected. However, these actions may not always trim (free) space on the array
immediately.

Oracle provides a utility called ASM Storage Reclamation Utility (ASRU) which expedites the trim
operation. For example, after dropping 1.4TB of tablespaces and data files, Oracle reports the newly
available space in V$ASM_DISKGROUP, but puredb list space still considers the space to be
allocated. Consider the case when we drop the 190GB tablespace ASRUDEMO which is in the
ORADATA disk group:

Before dropping the tablespace:

SELECT name,
total_mb/(1024) total_gig,
free_mb/(1024) free_gig,
(total_mb-free_mb)/1024 used_gig

FROM v$asm_diskgroup;

 Group Group Group
 Total Free Used
NAME GB GB GB
------------------- ------------- ------------- -----------
ORADATA 2,250.00 388.50 1,861.50
ORAFRA 1,643.03 435.77 1,207.25
ORAGRID 20.00 19.94 .06
REDOSSD2 50.00 49.94 .06
REDOSSD 50.00 9.89 40.11

5 rows selected.

And on the storage array:

!

© Pure Storage 2011 | 12

After we drop the ASRUDEMO tablespace, v$asm_diskgroup updates the available space as
expected:

drop tablespace tpchtab including contents and datafiles;

Tablespace dropped.

SELECT name,

total_mb/(1024) total_gig,
free_mb/(1024) free_gig,
total_mb-free_mb)/1024 used_gig

FROM v$asm_diskgroup;

 Group Group Group
 Total Free Used
NAME GB GB GB
------------------ ------------- ------------- -----------
ORADATA 2,250.00 1,779.34 470.66
ORAFRA 1,643.03 435.77 1,207.25
ORAGRID 20.00 19.94 .06
REDOSSD2 50.00 49.94 .06
REDOSSD 50.00 9.89 40.11

5 rows selected.

However, we don’t see the space recovered on the storage array:

!

© Pure Storage 2011 | 13

Although the array’s garbage collection will free the space eventually, we can use the ASRU utility
(under the “grid” O/S account on the database server) to trim the space immediately:

After the ASRU run, the recovered space is visible in the Physical Space column of the puredb list
space report:

!

© Pure Storage 2011 | 14

ASMLib and Alternatives

ASMLib is an Oracle-provided utility that allows you to configure block devices for use with ASM.
Specifically, it marks devices as ASM disks, and sets their permissions so that the o/s account that runs
ASM (typically either grid or oracle) can manipulate these devices. For example, to create an ASM
disk named MYASMDISK backed by /dev/dm-2 you would issue the command:

! /etc/init.d/oracleasm createdisk MYASMDISK /dev/dm-2

Afterwards, /dev/dm-2 would appear still have the same ownership and permissions, but ASMLib will
create a file /dev/oracleasm/disks/MYASMDISK owned by the O/S user and group the is
identified in /etc/sysconfig/oracleasm. You tell the ASM instance to look for potential disks in
this directory though the asm_diskstring initialization parameter.

The problem with ASMLib is that Oracle stopped providing it with RHEL 6.3 and beyond, although it is
still provided for Oracle Unbreakable Linux. Fortunately, there are simpler alternatives that work on
RHEL (as well as Oracle Unbreakable Linux).

ASMLib Alternative 1: udev

On RHEL 6.x you can use udev to present devices to ASM. Consider the device mpathbk created
above. The device is created as /dev/mapper/mpathbk, linked to /dev/dm-4 and owned by root:

Perform the following steps to change the device ownership to grid:asadmin.

1. Create an entry for the device in the udev rules file /etc/udev/rules.d/12-dm-
permissions.rules as follows

2. Use udevadm to trigger udev events and confirm the change in ownership for the block
device:

!

© Pure Storage 2011 | 15

Note the change in ownership to grid:asmadmin.

3. Use sqlplus or asmca to create a new disk group or to put the new device in an existing disk
group. Since the Purity Operating Environment provides RAID-3D you can safely use
External Redundancy for the disk group. Note that your asm_diskstring (discovery path)
should be /dev/dm*

After clicking “OK” the device will be added to the disk group and an ASM rebalance operation will
execute automatically. We recommend using the same size disk for all members of a disk group for
ease of rebalancing operations.

!

© Pure Storage 2011 | 16

ASMLib Alternative 2: multipath

The udev rules described above do not work on Linux 5.7, but you can effect the ownerships required
for ASM through the mulitpaths stanza of the /etc/multipath.conf file:

defaults {
 polling_interval 1
}
devices {
 device {
 vendor "PURE"
 path_selector "round-robin 0"
 path_grouping_policy multibus
 rr_min_io 1
 path_checker tur
 fast_io_fail_tmo 10
 dev_loss_tmo 30
 }
}
 multipaths {
 multipath {
 wwid 3624a937034fedb8251d5dcae0001028e
 alias ASMDISK01
 uid grid
 gid asmadmin
 mode 660
 }
 multipath {
 wwid 3624a937034fedb8251d5dcae0001028f
 alias ASMDISK02
 uid grid
 gid asmadmin
 mode 660
 }
 multipath {
 wwid 3624a937034fedb8251d5dcae00010290
 alias ASMDISK03
 uid grid
 gid asmadmin
 mode 660
 }

 }

These entries will create devices with the proper ownership and permissions in /dev/mapper. In
order for ASM to recognize these devices, the asm_diskstring should be set to /dev/mapper.

!

© Pure Storage 2011 | 17

File System Recommendations

There is no significant performance penalty for using a file system instead of ASM. As with ASM, we
recommend placing data, redo, and the flash recovery area (FRA) onto separate volumes for ease of
administration. We also recommend using the ext4 file system and mount it with discard and noatime
options. Below is a sample /etc/fstab file showing mount points /u01 (for oracle binaries, trace
files, etc.), /oradata (for datafiles) and /oraredo (for online redo logs).

The man page for mount describes the /discard flag as follows:

discard/nodiscard
Controls whether ext4 should issue discard/TRIM commands to the underlying
block device when blocks are freed. This is useful for SSD devices and
sparse/thinly-provisioned LUNs, but it is off by default until sufficient
testing has been done.

Mounting the ext4 file system with the discard flag causes freed space to be trimmed immediately, just
as the ASRU utility trims the storage behind ASM disk groups.

!

© Pure Storage 2011 | 18

Oracle Settings

For the most part, you don’t need to make changes to your Oracle configuration in order to realize
immediate performance benefits on a Pure Storage FlashArray™. However, if you have an extremely
heavy OLTP workload, there are a few tweaks you can make that will help you squeeze the most I/O
out of your system. In our testing, we found that the following settings increased performance by
about 5%

init.ora settings

_high_priority_processes='LMS*|LGWR|PMON'
• Sets processes scheduling priority to RR

• Minimizes need to “wake” LGWR

• Underscore parameter: consult oracle support

!
filesystemio_options = SETALL
• Allows asynch i/o

!
log_buffer = {at least 15MB}
• Values over 100MB are not uncommon

Use the CALIBRATE_IO Utility

Oracle provides a built in package dbms_resource_manager.calibrate_io which, like the ORION tool,
generates workload on the I/O subsystem. However, unlike ORION, it works with your running Oracle
database, and it generates statistics for the optimizer. Therefore, you should run calibrate_io and
gather statistics for your application schema at least once before launching your application.

The calibrate_io script as provided in the Oracle documentation and presented here using our
recommended values for <DISKS> and <MAX_LATENCY>.

SET SERVEROUTPUT ON
DECLARE
 lat INTEGER;
 iops INTEGER;
 mbps INTEGER;
BEGIN
-- DBMS_RESOURCE_MANAGER.CALIBRATE_IO (<DISKS>, <MAX_LATENCY>, iops, mbps, lat);
 DBMS_RESOURCE_MANAGER.CALIBRATE_IO (1000, 10, iops, mbps, lat);

 DBMS_OUTPUT.PUT_LINE ('max_iops = ' || iops);
 DBMS_OUTPUT.PUT_LINE ('latency = ' || lat);
 dbms_output.put_line('max_mbps = ' || mbps);
end;
/

Typically you will see output similar to:

max_iops = 134079
latency = 0
max_mbps = 1516

© Pure Storage 2011 | 19

Conclusion

Many of the traditional architecture decisions and compromises you have had to make with traditional
storage are not relevant on a Pure Storage FlashArray™. You do not need to sacrifice performance to
gain resiliency, nor do you need to change existing policies that you may already have in place. In
other words, there is no wrong way to deploy Oracle on Pure Storage; you can expect performance
benefits out of the box.

That said, there are some configuration choices you can make to increase flexibility and maximize
performance:

• Use the Pure Storage recommended multipath.conf settings

• Set the scheduler, rq_affinity, and entropy for the Pure Storage devices

• Separate differate I/O work loads to dedicated LUNS for enhanced visibility

• If you use a file system for data files, use ext4

• Always run calibrate_io

Feel free to contact Chas. Dye, Database Solutions Architect (cdye@purestorage.com) if you have
questions or if you would like to discuss the suitability of Pure Storage in you environment.

!

© Pure Storage 2011 | 20

