
Red Hat OpenStack Platform 10

Storage Guide

Understanding, using, and managing persistent storage in OpenStack

Last Updated: 2018-08-21

Red Hat OpenStack Platform 10 Storage Guide

Understanding, using, and managing persistent storage in OpenStack

OpenStack Team

rhos-docs@redhat.com

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons

Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is

available at

http://creativecommons.org/licenses/by-sa/3.0/

. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must

provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,

Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity

logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other

countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States

and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and

other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to

or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks

or trademarks/service marks of the OpenStack Foundation, in the United States and other countries

and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or

sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide details the different procedures for using and managing persistent storage in a Red Hat

OpenStack Platform environment. It also includes procedures for configuring and managing the

respective OpenStack service of each persistent storage type.

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION TO PERSISTENT STORAGE IN OPENSTACK

1.1. SCALABILITY AND BACK END

1.2. ACCESSIBILITY AND ADMINISTRATION

1.3. SECURITY

1.4. REDUNDANCY AND DISASTER RECOVERY

CHAPTER 2. BLOCK STORAGE AND VOLUMES

2.1. BACK ENDS

2.2. BLOCK STORAGE SERVICE ADMINISTRATION

2.2.1. Group Volume Settings with Volume Types

2.2.1.1. List a Host Driver’s Capabilities

2.2.1.2. Create and Configure a Volume Type

2.2.1.3. Edit a Volume Type

2.2.1.4. Delete a Volume Type

2.2.1.5. Create and Configure Private Volume Types

2.2.2. Create and Configure an Internal Tenant for the Block Storage Service

2.2.3. Configure and Enable the Image-Volume Cache

2.2.4. Use Quality-of-Service Specifications

2.2.4.1. Create and Configure a QOS Spec

2.2.4.2. Associate a QOS Spec with a Volume Type

2.2.4.3. Disassociate a QOS Spec from a Volume Type

2.2.5. Configure Volume Encryption

2.2.5.1. Configure Volume Type Encryption

2.2.6. Configure How Volumes are Allocated to Multiple Back Ends

2.2.7. Configure and Use Consistency Groups

2.2.7.1. Set Up Consistency Groups

2.2.7.2. Create and Manage Consistency Groups

2.2.7.3. Create and Manage Consistency Group Snapshots

2.2.7.4. Clone Consistency Groups

2.2.8. Backup Administration

2.2.8.1. View and Modify a Tenant’s Backup Quota

2.2.8.2. Enable Volume Backup Management Through the Dashboard

2.2.8.3. Set an NFS Share as a Backup Repository

2.2.8.3.1. Set a Different Backup File Size

2.3. BASIC VOLUME USAGE AND CONFIGURATION

2.3.1. Create a Volume

2.3.2. Specify Back End for Volume Creation

2.3.3. Edit a Volume’s Name or Description

2.3.4. Delete a Volume

2.3.5. Attach and Detach a Volume to an Instance

2.3.5.1. Attach a Volume to an Instance

2.3.5.2. Detach a Volume From an Instance

2.3.6. Set a Volume to Read-Only

2.3.7. Change a Volume’s Owner

2.3.7.1. Transfer a Volume from the Command Line

2.3.7.2. Transfer a Volume Using the Dashboard

2.3.8. Create, Use, or Delete Volume Snapshots

2.3.8.1. Protected and Unprotected Snapshots in a Red Hat Ceph Back End

2.3.9. Upload a Volume to the Image Service

2.3.10. Changing a Volume’s Type (Volume Re-typing)

4

5

6

6

6

7

8

8

8

8

9

10

10

11

11

12

13

14

14

15

15

15

15

16

17

18

19

20

20

21

21

21

22

23

23

23

24

25

25

25

25

26

26

26

26

27

28

28

29

29

Table of Contents

1

. .

. .

2.4. ADVANCED VOLUME CONFIGURATION

2.4.1. Back Up and Restore a Volume

2.4.1.1. Create a Full Volume Backup

2.4.1.1.1. Create a Volume Backup as an Admin

2.4.1.2. Create an Incremental Volume Backup

2.4.1.3. Restore a Volume After a Block Storage Database Loss

2.4.1.4. Restore a Volume from a Backup

2.4.2. Migrate a Volume

2.4.2.1. Migrate Between Hosts

2.4.2.2. Migrate Between Back Ends

CHAPTER 3. OBJECT STORAGE

3.1. OBJECT STORAGE SERVICE ADMINISTRATION

3.1.1. Configure Erasure Coding

3.1.1.1. Configure an Erasure Coding Policy

3.1.1.2. Configure an Object Storage Ring

3.1.1.3. Using Erasure Coding

3.1.2. Configure Fast-POST

3.1.3. Set Object Storage as a Back End for the Image Service

3.1.4. Enable At-Rest Encryption

3.2. BASIC CONTAINER MANAGEMENT

3.2.1. Create a Container

3.2.2. Create a Pseudo Folder for a Container

3.2.3. Delete a Container

3.2.4. Upload an Object

3.2.5. Copy an Object

3.2.6. Delete an Object

CHAPTER 4. FILE SHARES

4.1. BACK ENDS

4.2. CREATE AND MANAGE SHARES

4.3. CREATE A SHARE

4.4. LIST SHARES AND EXPORT INFORMATION

4.5. GRANT SHARE ACCESS

4.6. MOUNT A SHARE ON AN INSTANCE

4.7. REVOKE ACCESS TO A SHARE

4.8. DELETE A SHARE

29

29

30

31

32

32

33

33

33

34

35

35

35

35

37

38

38

39

40

41

41

42

42

42

43

43

44

44

44

45

45

46

47

47

47

Red Hat OpenStack Platform 10 Storage Guide

2

Table of Contents

3

PREFACE

Red Hat OpenStack Platform (Red Hat OpenStack Platform) provides the foundation to build a private or

public Infrastructure-as-a-Service (IaaS) cloud on top of Red Hat Enterprise Linux. It offers a massively

scalable, fault-tolerant platform for the development of cloud-enabled workloads.

This guide discusses procedures for creating and managing persistent storage. Within OpenStack, this

storage is provided by three main services:

Block Storage (openstack-cinder)

Object Storage (openstack-swift)

Shared File System Storage (openstack-manila)

These services provide different types of persistent storage, each with its own set of advantages in

different use cases. This guide discusses the suitability of each for general enterprise storage

requirements.

You can manage cloud storage using either the OpenStack dashboard or the command-line clients.

Most procedures can be carried out using either method; some of the more advanced procedures can

only be executed on the command line. This guide provides procedures for the dashboard where

possible.

NOTE

For the complete suite of documentation for Red Hat OpenStack Platform, see Red Hat

OpenStack Platform Documentation.

IMPORTANT

This guide documents the use of crudini to apply some custom service settings. As

such, you need to install the crudini package first:

yum install crudini -y

Red Hat OpenStack Platform 10 Storage Guide

4

CHAPTER 1. INTRODUCTION TO PERSISTENT STORAGE IN

OPENSTACK

OpenStack recognizes two types of storage: ephemeral and persistent. Ephemeral storage is storage

that is associated only to a specific Compute instance. Once that instance is terminated, so is its

ephemeral storage. This type of storage is useful for basic runtime requirements, such as storing the

instance’s operating system.

Persistent storage, on the other hand, is designed to survive ("persist") independent of any running

instance. This storage is used for any data that needs to be reused, either by different instances or

beyond the life of a specific instance. OpenStack uses the following types of persistent storage:

Volumes

The OpenStack Block Storage service (openstack-cinder) allows users to access block storage

devices through volumes. Users can attach volumes to instances in order to augment their ephemeral

storage with general-purpose persistent storage. Volumes can be detached and re-attached to

instances at will, and can only be accessed through the instance they are attached to.

Volumes also provide inherent redundancy and disaster recovery through backups and snapshots. In

addition, you can also encrypt volumes for added security. For more information about volumes, see

Chapter 2, Block Storage and Volumes.

NOTE

Instances can also be configured to use absolutely no ephemeral storage. In such

cases, the Block Storage service can write images to a volume; in turn, the volume

can be used as a bootable root volume for an instance.

Containers

The OpenStack Object Storage service (openstack-swift) provides a fully-distributed storage

solution used to store any kind of static data or binary object, such as media files, large datasets, and

disk images. The Object Storage service organizes these objects through containers.

While a volume’s contents can only be accessed through instances, the objects inside a container can

be accessed through the Object Storage REST API. As such, the Object Storage service can be used

as a repository by nearly every service within the cloud. For example, the Data Processing service

(openstack-sahara) can manage all of its binaries, data input, data output, and templates directly

through the Object Storage service.

Shares

The Shared File System Service (openstack-manila) provides the means to easily provision remote,

shareable file systems, or shares. Shares allow tenants within the cloud to openly share storage, and

can be consumed by multiple instances simultaneously.

Each storage type is designed to address specific storage requirements. Containers are designed for

wide access, and as such feature the highest throughput, access, and fault tolerance among all storage

types. Container usage is geared more towards services.

On the other hand, volumes are used primarily for instance consumption. They do not enjoy the same

level of access and performance as containers, but they do have a larger feature set and have more

native security features than containers. Shares are similar to volumes in this regard, except that they

can be consumed by multiple instances.

The following sections discuss each storage type’s architecture and feature set in detail, within the

context of specific storage criteria.

CHAPTER 1. INTRODUCTION TO PERSISTENT STORAGE IN OPENSTACK

5

1.1. SCALABILITY AND BACK END

In general, a clustered storage solution provides greater back end scalability. For example, when using

Red Hat Ceph as a Block Storage back end, you can scale storage capacity and redundancy by adding

more Ceph OSD (Object Storage Daemon) nodes. Both Block Storage and Object Storage services

support Red Hat Ceph as a back end.

The Block Storage service can use multiple storage solutions as discrete back ends. At the back end

level, you can scale capacity by adding more back ends and restarting the service. The Block Storage

service also features a large list of supported back end solutions, some of which feature additional

scalability features.

By default, the Object Storage service uses the file system on configured storage nodes, and can use as

much space as is available. The Object Storage service supports the XFS and ext4 file systems, and

both can be scaled up to consume as much available underlying block storage. You can also scale

capacity by adding more storage devices to the storage node.

The Shared File System Service provisions shares backed by storage from a separate storage pool.

This pool (which is typically managed by a third-party back end service) provides the share with storage

at the file system level. The Shared File System Service can use both NetApp and CephFS, which can

be configured to use a storage pool of pre-created volumes which provisioned shares can use for

storage. In either deployment, scaling involves adding more volumes to the pool.

1.2. ACCESSIBILITY AND ADMINISTRATION

Volumes are consumed only through instances, and can only be attached to and mounted within one

instance at a time. Users can create snapshots of volumes, which can be used for cloning or restoring a

volume to a previous state (see Section 1.4, “Redundancy and Disaster Recovery”). The Block Storage

service also allows you to create volume types, which aggregate volume settings (for example, size and

back end) that can be easily invoked by users when creating new volumes. These types can be further

associated with Quality-of-Service specifications, which allow you to create different storage tiers for

users.

Like volumes, shares are consumed through instances. However, shares can be directly mounted within

an instance, and do not need to be attached through the dashboard or CLI. Shares can also be mounted

by multiple instances simultaneously. The Shared File System service also supports share snapshots

and cloning; you can also create share types to aggregate settings (similar to volume types).

Objects in a container are accessible via API, and can be made accessible to instances and services

within the cloud. This makes them ideal as object repositories for services; for example, the Image

service (openstack-glance) can store its images in containers managed by the Object Storage service.

1.3. SECURITY

The Block Storage service provides basic data security through volume encryption. With this, you can

configure a volume type to be encrypted through a static key; the key will then be used for encrypting all

volumes created from the configured volume type. See Section 2.2.5, “Configure Volume Encryption” for

more details.

Object and container security, on the other hand, is configured at the service and node level. The Object

Storage service provides no native encryption for containers and objects. Rather, the Object Storage

service prioritizes accessibility within the cloud, and as such relies solely on the cloud’s network security

in order to protect object data.

The Shared File System service can secure shares through access restriction, whether by instance IP,

Red Hat OpenStack Platform 10 Storage Guide

6

user/group, or TLS certificate. In addition, some Shared File System service deployments can feature a

separate share servers to manage the relationship between share networks and shares; some share

servers support (or even require) additional network security. For example, a CIFS share server requires

the deployment of an LDAP, Active Directory, or Kerberos authentication service.

1.4. REDUNDANCY AND DISASTER RECOVERY

The Block Storage service features volume backup and restoration, providing basic disaster recovery for

user storage. Backups allow you to protect volume contents. On top of this, the service also supports

snapshots; aside from cloning, snapshots are also useful in restoring a volume to a previous state.

In a multi-backend environment, you can also migrate volumes between back ends. This is useful if you

need to take a back end offline for maintenance. Backups are typically stored in a storage back end

separate from their source volumes to help protect the data. This is not possible, however, with

snapshots, as snapshots are dependent on their source volumes.

The Block Storage service also supports the creation of consistency groups, which allow you to group

volumes together for simultaneous snapshot creation. This, in turn, allows for a greater level of data

consistency across multiple volumes. See Section 2.2.7, “Configure and Use Consistency Groups” for

more details.

Finally, the Block Storage service also features volume replication. This allows you to configure volumes

to replicate content between each other, thereby providing basic redundancy.

NOTE

Volume replication is only available through specific third-party back ends and their

respective drivers.

The Object Storage service provides no built-in backup features. As such, all backups must be

performed at the file system or node level. The service, however, features more robust redundancy and

fault tolerance; even the most basic deployment of the Object Storage service replicates objects multiple

times. You can use failover features like dm-multipath to enhance redundancy.

The Shared File System service provides no built-in backup features for shares, but it does allow you to

create snapshots for cloning and restoration.

CHAPTER 1. INTRODUCTION TO PERSISTENT STORAGE IN OPENSTACK

7

CHAPTER 2. BLOCK STORAGE AND VOLUMES

The Block Storage service (openstack-cinder) manages the administration, security, scheduling, and

overall management of all volumes. Volumes are used as the primary form of persistent storage for

Compute instances.

2.1. BACK ENDS

By default, the Block Storage service uses an LVM back end as a repository for volumes. While this back

end is suitable for test environments, we advise that you deploy a more robust back end for an

Enterprise environment.

When deploying Red Hat OpenStack Platform for the environment, we recommand using the director.

Doing so helps ensure the proper configuration of each service, including the Block Storage service

(and, by extension, its back end). The director also has several integrated back end configurations.

Red Hat OpenStack Platform supports Red Hat Ceph and NFS as Block Storage back ends. For

instructions on how to deploy Ceph with OpenStack, see Red Hat Ceph Storage for the Overcloud.

For instructions on how to set up NFS storage in the overcloud, see Configuring NFS Storage (from the

Advanced Overcloud Customization guide).

Third-Party Storage Providers

You can also configure the Block Storage service to use supported third-party storage appliances. The

director includes the necessary components for easily deploying the following:

Dell EqualLogic

Dell Storage Center

NetApp (for supported appliances)

Fujitsu Eternus is also supported as a back end, but is not yet integrated into the Director.

For a complete list of supported back end appliances and drivers, see Component, Plug-In, and Driver

Support in RHEL OpenStack Platform.

2.2. BLOCK STORAGE SERVICE ADMINISTRATION

The following procedures explain how to configure the Block Storage service to suit your needs. All of

these procedures require administrator privileges.

2.2.1. Group Volume Settings with Volume Types

OpenStack allows you to create volume types, which allows you apply the type’s associated settings.

You can apply these settings during volume creation (Section 2.3.1, “Create a Volume”) or even

afterwards (Section 2.3.10, “Changing a Volume’s Type (Volume Re-typing)”). For example, you can

associate:

Whether or not a volume is encrypted (Section 2.2.5.1, “Configure Volume Type Encryption”)

Which back end a volume should use (Section 2.3.2, “Specify Back End for Volume Creation”

and Section 2.4.2.2, “Migrate Between Back Ends”)

Quality-of-Service (QoS) Specs

Red Hat OpenStack Platform 10 Storage Guide

8

Settings are associated with volume types using key-value pairs called Extra Specs. When you specify a

volume type during volume creation, the Block Storage scheduler applies these key/value pairs as

settings. You can associate multiple key/value pairs to the same volume type.

Volume types provide the capability to provide different users with storage tiers. By associating specific

performance, resilience, and other settings as key/value pairs to a volume type, you can map tier-specific

settings to different volume types. You can then apply tier settings when creating a volume by specifying

the corresponding volume type.

NOTE

Available and supported Extra Specs vary per volume driver. Consult your volume driver’s

documentation for a list of valid Extra Specs.

2.2.1.1. List a Host Driver’s Capabilities

Available and supported Extra Specs vary per back end driver. Consult the driver’s documentation for a

list of valid Extra Specs.

Alternatively, you can query the Block Storage host directly to determine which well-defined standard

Extra Specs are supported by its driver. Start by logging in (through the command line) to the node

hosting the Block Storage service. Then:

cinder service-list

This command will return a list containing the host of each Block Storage service (cinder-backup,

cinder-scheduler, and cinder-volume). For example:

+------------------+---------------------------+------+---------

| Binary | Host | Zone | Status ...

+------------------+---------------------------+------+---------

| cinder-backup | localhost.localdomain | nova | enabled ...

| cinder-scheduler | localhost.localdomain | nova | enabled ...

| cinder-volume | localhost.localdomain@lvm | nova | enabled ...

+------------------+---------------------------+------+---------

To display the driver capabilities (and, in turn, determine the supported Extra Specs) of a Block Storage

service, run:

cinder get-capabilities VOLSVCHOST

Where VOLSVCHOST is the complete name of the cinder-volume's host. For example:

cinder get-capabilities localhost.localdomain@lvm

 +---------------------+---+

 | Volume stats | Value |

 +---------------------+---+

 | description | None |

 | display_name | None |

 | driver_version | 3.0.0 |

 | namespace | OS::Storage::Capabilities::localhost.loc...

 | pool_name | None |

 | storage_protocol | iSCSI |

 | vendor_name | Open Source |

CHAPTER 2. BLOCK STORAGE AND VOLUMES

9

 | visibility | None |

 | volume_backend_name | lvm |

 +---------------------+---+

 +--------------------+--+

 | Backend properties | Value |

 +--------------------+--+

 | compression | {u'type': u'boolean', u'description'...

 | qos | {u'type': u'boolean', u'des ...

 | replication | {u'type': u'boolean', u'description'...

 | thin_provisioning | {u'type': u'boolean', u'description': u'S...

 +--------------------+--+

The Backend properties column shows a list of Extra Spec Keys that you can set, while the Value

column provides information on valid corresponding values.

2.2.1.2. Create and Configure a Volume Type

1. As an admin user in the dashboard, select Admin > Volumes > Volume Types.

2. Click Create Volume Type.

3. Enter the volume type name in the Name field.

4. Click Create Volume Type. The new type appears in the Volume Types table.

5. Select the volume type’s View Extra Specs action.

6. Click Create, and specify the Key and Value. The key/value pair must be valid; otherwise,

specifying the volume type during volume creation will result in an error.

7. Click Create. The associated setting (key/value pair) now appears in the Extra Specs table.

By default, all volume types are accessible to all OpenStack tenants. If you need to create volume types

with restricted access, you will need to do so through the CLI. For instructions, see Section 2.2.1.5,

“Create and Configure Private Volume Types”.

NOTE

You can also associate a QOS Spec to the volume type. For details, refer to

Section 2.2.4.2, “Associate a QOS Spec with a Volume Type”.

2.2.1.3. Edit a Volume Type

1. As an admin user in the dashboard, select Admin > Volumes > Volume Types.

2. In the Volume Types table, select the volume type’s View Extra Specs action.

3. On the Extra Specs table of this page, you can:

Add a new setting to the volume type. To do this, click Create, and specify the key/value pair

of the new setting you want to associate to the volume type.

Edit an existing setting associated with the volume type. To do this, select the setting’s Edit

action.

Red Hat OpenStack Platform 10 Storage Guide

10

Delete existing settings associated with the volume type. To do this, select the extra specs'

check box and click Delete Extra Specs in this and the next dialog screen.

2.2.1.4. Delete a Volume Type

To delete a volume type, select its corresponding check boxes from the Volume Types table and click

Delete Volume Types.

2.2.1.5. Create and Configure Private Volume Types

By default, all volume types are visible to all tenants. You can override this during volume type creation

and set it to private. To do so, you will need to set the type’s Is_Public flag to False.

Private volume types are useful for restricting access to certain volume settings. Typically, these are

settings that should only be usable by specific tenants; examples include new back ends or ultra-high

performance configurations that are being tested.

To create a private volume type, run:

cinder --os-volume-api-version 2 type-create --is-public false VTYPE

+ Replace VTYPE with the name of the private volume type.

By default, private volume types are only accessible to their creators. However, admin users can find and

view private volume types using the following command:

cinder --os-volume-api-version 2 type-list --all

This command will list both public and private volume types, and will also include the name and ID of

each one. You will need the volume type’s ID to provide access to it.

Access to a private volume type is granted at the tenant level. To grant a tenant access to a private

volume type, run:

cinder --os-volume-api-version 2 type-access-add --volume-type VTYPEID -

-project-id TENANTID

Where:

VTYPEID is the ID of the private volume type.

TENANTID is the ID of the project/tenant you are granting access to VTYPEID.

To view which tenants have access to a private volume type, run:

cinder --os-volume-api-version 2 type-access-list --volume-type VTYPE

To remove a tenant from the access list of a private volume type, run:

cinder --os-volume-api-version 2 type-access-remove --volume-type VTYPE

--project-id TENANTID

CHAPTER 2. BLOCK STORAGE AND VOLUMES

11

NOTE

By default, only users with administrative privileges can create, view, or configure access

for private volume types.

2.2.2. Create and Configure an Internal Tenant for the Block Storage Service

Some Block Storage features (for example, the Image-Volume cache) require the configuration of an

internal tenant. The Block Storage service uses this tenant/project to manage block storage items that

do not necessarily need to be exposed to normal users. Examples of such items are images cached for

frequent volume cloning or temporary copies of volumes being migrated.

To configure an internal project, first create a generic project and user, both named cinder-internal. To

do so, log in to the Controller node and run:

openstack project create --enable --description "Block Storage Internal

Tenant" cinder-internal

 +-------------+----------------------------------+

 | Property | Value |

 +-------------+----------------------------------+

 | description | Block Storage Internal Tenant |

 | enabled | True |

 | id | cb91e1fe446a45628bb2b139d7dccaef |

 | name | cinder-internal |

 +-------------+----------------------------------+

openstack user create --project cinder-internal cinder-internal

 +----------+----------------------------------+

 | Property | Value |

 +----------+----------------------------------+

 | email | None |

 | enabled | True |

 | id | 84e9672c64f041d6bfa7a930f558d946 |

 | name | cinder-internal |

 |project_id| cb91e1fe446a45628bb2b139d7dccaef |

 | username | cinder-internal |

 +----------+----------------------------------+

Note that creating the project and user will display their respective IDs. Configure the Block Storage

service to use both project and user as the internal project through their IDs. To do so, run the following

on each Block Storage node:

crudini --set /etc/cinder/cinder.conf DEFAULT

cinder_internal_tenant_project_id TENANTID

crudini --set /etc/cinder/cinder.conf DEFAULT

cinder_internal_tenant_user_id USERID

Replace TENANTID and USERID with the respective IDs of the cinder-internal project and user,

which you created earlier. For example, using the IDs supplied above:

crudini --set /etc/cinder/cinder.conf DEFAULT

cinder_internal_tenant_project_id cb91e1fe446a45628bb2b139d7dccaef

crudini --set /etc/cinder/cinder.conf DEFAULT

cinder_internal_tenant_user_id 84e9672c64f041d6bfa7a930f558d946

Red Hat OpenStack Platform 10 Storage Guide

12

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

2.2.3. Configure and Enable the Image-Volume Cache

The Block Storage service features an optional Image-Volume cache which can be used when creating

volumes from images. This cache is designed to improve the speed of volume creation from frequently-

used images. For information on how to create volumes from images, see Section 2.3.1, “Create a

Volume”.

When enabled, the Image-Volume cache stores a copy of an image the first time a volume is created

from it. This stored image is cached locally to the Block Storage back end to help improve performance

the next time the image is used to create a volume. The Image-Volume cache’s limit can be set to a size

(in GB), number of images, or both.

The Image-Volume cache is supported by several back ends. If you are using a third-party back end,

refer to its documentation for information on Image-Volume cache support.

NOTE

The Image-Volume cache requires that an internal tenant be configured for the Block

Storage service. For instructions, see Section 2.2.2, “Create and Configure an Internal

Tenant for the Block Storage Service”.

To enable and configure the Image-Volume cache on a back end (BACKEND), run the following

commands:

crudini --set /etc/cinder/cinder.conf BACKEND image_volume_cache_enabled

True

Replace BACKEND with the name of the target back end (specifically, its volume_backend_name

value).

By default, the Image-Volume cache size is only limited by the back end. To configure a maximum size

(MAXSIZE, in GB):

crudini --set /etc/cinder/cinder.conf BACKEND

image_volume_cache_max_size_gb MAXSIZE

Alternatively, you can also set a maximum number of images (MAXNUMBER). To do so:

crudini --set /etc/cinder/cinder.conf BACKEND

image_volume_cache_max_count MAXNUMBER

The Block Storage service database uses a time stamp to track when each cached image was last used

to create an image. If either or both MAXSIZE and MAXNUMBER are set, the Block Storage service will

delete cached images as needed to make way for new ones. Cached images with the oldest time stamp

are deleted first whenever the Image-Volume cache limits are met.

After configuring the Image-Volume cache, restart the Block Storage service. To do so, log in to any

Controller node as the heat-admin user and run:

CHAPTER 2. BLOCK STORAGE AND VOLUMES

13

pcs resource restart openstack-cinder-volume

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

2.2.4. Use Quality-of-Service Specifications

You can map multiple performance settings to a single Quality-of-Service specification (QOS Specs).

Doing so allows you to provide performance tiers for different user types.

Performance settings are mapped as key/value pairs to QOS Specs, similar to the way volume settings

are associated to a volume type. However, QOS Specs are different from volume types in the following

respects:

QOS Specs are used to apply performance settings, which include limiting read/write operations

to disks. Available and supported performance settings vary per storage driver.

To determine which QOS Specs are supported by your back end, consult the documentation of

your back end device’s volume driver.

Volume types are directly applied to volumes, whereas QOS Specs are not. Rather, QOS Specs

are associated to volume types. During volume creation, specifying a volume type also applies

the performance settings mapped to the volume type’s associated QOS Specs.

2.2.4.1. Create and Configure a QOS Spec

As an administrator, you can create and configure a QOS Spec through the QOS Specs table. You can

associate more than one key/value pair to the same QOS Spec.

1. As an admin user in the dashboard, select Admin > Volumes > Volume Types.

2. On the QOS Specs table, click Create QOS Spec.

3. Enter a name for the QOS Spec.

4. In the Consumer field, specify where the QOS policy should be enforced:

Table 2.1. Consumer Types

Type Description

back-end QOS policy will be applied to the Block Storage back end.

front-end QOS policy will be applied to Compute.

both QOS policy will be applied to both Block Storage and Compute.

5. Click Create. The new QOS Spec should now appear in the QOS Specs table.

6. In the QOS Specs table, select the new spec’s Manage Specs action.

Red Hat OpenStack Platform 10 Storage Guide

14

7. Click Create, and specify the Key and Value. The key/value pair must be valid; otherwise,

specifying a volume type associated with this QOS Spec during volume creation will fail.

8. Click Create. The associated setting (key/value pair) now appears in the Key-Value Pairs table.

2.2.4.2. Associate a QOS Spec with a Volume Type

As an administrator, you can associate a QOS Spec to an existing volume type using the Volume Types

table.

1. As an administrator in the dashboard, select Admin > Volumes > Volume Types.

2. In the Volume Types table, select the type’s Manage QOS Spec Association action.

3. Select a QOS Spec from the QOS Spec to be associated list.

4. Click Associate. The selected QOS Spec now appears in the Associated QOS Spec column of

the edited volume type.

2.2.4.3. Disassociate a QOS Spec from a Volume Type

1. As an administrator in the dashboard, select Admin > Volumes > Volume Types.

2. In the Volume Types table, select the type’s Manage QOS Spec Association action.

3. Select None from the QOS Spec to be associated list.

4. Click Associate. The selected QOS Spec is no longer in the Associated QOS Spec column of

the edited volume type.

2.2.5. Configure Volume Encryption

Volume encryption helps provide basic data protection in case the volume back-end is either

compromised or outright stolen. Both Compute and Block Storage services are integrated to allow

instances to read access and use encrypted volumes.

IMPORTANT

At present, volume encryption is only supported on volumes backed by block devices.

Encryption of network-attached volumes (such as RBD) or file-based volumes (such as

NFS) is still unsupported.

Volume encryption is applied through volume type. See Section 2.2.5.1, “Configure Volume Type

Encryption” for information on encrypted volume types.

2.2.5.1. Configure Volume Type Encryption

To create encrypted volumes, you first need an encrypted volume type. Encrypting a volume type

involves setting what provider class, cipher, and key size it should use:

1. As an admin user in the dashboard, select Admin > Volumes > Volume Types.

2. In the Actions column of the volume to be encrypted, select Create Encryption. Doing so will

launch the Create Volume Type Encryption wizard.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

15

3. From there, configure the Provider, Control Location, Cipher, and Key Size settings of the

volume type’s encryption. The Description column describes each setting.

IMPORTANT

At present, the only supported Provider is LuksEncryptor, while the only

supported Cipher is aes-xts-plain64.

4. Click Create Volume Type Encryption.

Once you have an encrypted volume type, you can invoke it to automatically create encrypted volumes.

For more information on creating a volume type, see Section 2.2.1.2, “Create and Configure a Volume

Type”. Specifically, select the encrypted volume type from the Type drop-down list in the Create Volume

window (see to Section 2.3, “Basic Volume Usage and Configuration”).

You can also re-configure the encryption settings of an encrypted volume type. To do so, select Update

Encryption from the Actions column of the volume type. Doing so will launch the Update Volume Type

Encryption wizard.

In Project > Compute > Volumes, the Encrypted column in the Volumes table indicates whether the

volume is encrypted. If it is, you can click Yes in that column to view the encryption settings.

2.2.6. Configure How Volumes are Allocated to Multiple Back Ends

If the Block Storage service is configured to use multiple back ends, you can use configured volume

types to specify where a volume should be created. For details, see Section 2.3.2, “Specify Back End for

Volume Creation”.

The Block Storage service will automatically choose a back end if you do not specify one during volume

creation. Block Storage sets the first defined back end as a default; this back end will be used until it runs

out of space. At that point, Block Storage will set the second defined back end as a default, and so on.

If this is not suitable for your needs, you can use the filter scheduler to control how Block Storage should

select back ends. This scheduler can use different filters to triage suitable back ends, such as:

AvailabilityZoneFilter

Filters out all back ends that do not meet the availability zone requirements of the requested volume.

CapacityFilter

Selects only back ends with enough space to accommodate the volume.

CapabilitiesFilter

Selects only back ends that can support any specified settings in the volume.

InstanceLocality

Configures clusters to use volumes local to the same node (when the OpenStack Data Processing

service is enabled)

To configure the filter scheduler, add an environment file to your deployment containing:

parameter_defaults:

 ControllerExtraConfig: # 1

 cinder::config::cinder_config:

 DEFAULT/scheduler_default_filters:

Red Hat OpenStack Platform 10 Storage Guide

16

1

 value:

'AvailabilityZoneFilter,CapacityFilter,CapabilitiesFilter,InstanceLocality

'

You can also add the ControllerExtraConfig: hook and its nested sections to the

parameter_defaults: section of an existing environment file.

Alternatively, you can also manually configure the filter scheduler. To do so:

1. Log in as heat-admin to the node hosting the Block Storage service.

2. Enable the FilterScheduler scheduler driver.

$ sudo crudini --set /etc/cinder/cinder.conf DEFAULT

scheduler_driver cinder.scheduler.filter_scheduler.FilterScheduler

3. Set which filters should be active:

$ sudo crudini --set /etc/cinder/cinder.conf DEFAULT

scheduler_default_filters

AvailabilityZoneFilter,CapacityFilter,CapabilitiesFilter

4. Configure how the scheduler should select a suitable back end. If you want the scheduler:

To always choose the back end with the most available free space, run:

$ sudo crudini --set /etc/cinder/cinder.conf DEFAULT

scheduler_default_weighers AllocatedCapacityWeigher

$ sudo crudini --set /etc/cinder/cinder.conf DEFAULT

allocated_capacity_weight_multiplier -1.0

To choose randomly among all suitable back ends, run:

$ crudini --set /etc/cinder/cinder.conf DEFAULT

scheduler_default_weighers ChanceWeigher

5. Restart the Block Storage scheduler to apply your settings. To do so, log in to any Controller

node as the heat-admin user and run:

$ pcs resource restart openstack-cinder-scheduler

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

2.2.7. Configure and Use Consistency Groups

The Block Storage service allows you to set consistency groups. With this, you can group multiple

volumes together as a single entity. This, in turn, allows you to perform operations on multiple volumes

at once, rather than individually. Specifically, this release allows you to use consistency groups to create

CHAPTER 2. BLOCK STORAGE AND VOLUMES

17

snapshots for multiple volumes simultaneously. By extension, this will also allow you to restore or clone

those volumes simultaneously.

A volume may be a member of multiple consistency groups. However, you cannot delete, retype, or

migrate volumes once you add them to a consistency group.

As of this release, consistency groups are only supported by the drivers of the following storage back

ends:

EMC VMAX

EMC VNX

EMC ScaleIO

EMC ExtremIO

HP 3Par StorServ

IBM DS8000

IBM StorwizeSVC

IBM XIV

NetApp Data ONTAP

NetApp ESERIES

NetApp SolidFire

2.2.7.1. Set Up Consistency Groups

By default, Block Storage security policy disables consistency groups APIs. You need to enable it here

before using the feature. To do so, edit the related consistency group entries in /etc/cinder/policy.json of

the node hosting the Block Storage API service (namely, openstack-cinder-api). The entries appear as

follows:

"consistencygroup:create" : "group:nobody",

​"consistencygroup:delete": "group:nobody",

​"consistencygroup:update": "group:nobody",

​"consistencygroup:get": "group:nobody",

​"consistencygroup:get_all": "group:nobody",

​"consistencygroup:create_cgsnapshot" : "group:nobody",

​"consistencygroup:delete_cgsnapshot": "group:nobody",

​"consistencygroup:get_cgsnapshot": "group:nobody",

​"consistencygroup:get_all_cgsnapshots": "group:nobody",

For increased security, set the permissions for both consistency group API and volume type

management API be identical. The volume type management API is set to "rule:admin_or_owner" by

default (in the same /etc/cinder/policy.json file):

"volume_extension:types_manage": "rule:admin_or_owner",

So, to enable the consistency group APIs as recommended, edit their entries as follows:

Red Hat OpenStack Platform 10 Storage Guide

18

"consistencygroup:create" : "rule:admin_api",

​"consistencygroup:delete": "rule:admin_api",

​"consistencygroup:update": "rule:admin_api",

​"consistencygroup:get": "rule:admin_api",

​"consistencygroup:get_all": "rule:admin_api",

​"consistencygroup:create_cgsnapshot" : "rule:admin_api",

​"consistencygroup:delete_cgsnapshot": "rule:admin_api",

​"consistencygroup:get_cgsnapshot": "rule:admin_api",

​"consistencygroup:get_all_cgsnapshots": "rule:admin_api",

NOTE

You can also make the consistency groups feature available to all users. To do so, set the

API policy entries to allow users to create, use, and manage their own concistency

groups. To do so, use rule:admin_or_owner:

"consistencygroup:create" : "rule:admin_or_owner",

​"consistencygroup:delete": "rule:admin_or_owner",

​"consistencygroup:update": "rule:admin_or_owner",

​"consistencygroup:get": "rule:admin_or_owner",

​"consistencygroup:get_all": "rule:admin_or_owner",

​"consistencygroup:create_cgsnapshot" : "rule:admin_or_owner",

​"consistencygroup:delete_cgsnapshot": "rule:admin_or_owner",

​"consistencygroup:get_cgsnapshot": "rule:admin_or_owner",

​"consistencygroup:get_all_cgsnapshots": "rule:admin_or_owner",

After enabling the consistency group APIs, restart the Block Storage API service. To do so, log in to any

Controller node as the heat-admin user and run:

pcs resource restart openstack-cinder-api

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

2.2.7.2. Create and Manage Consistency Groups

After enabling the consistency groups API, you can then start creating consistency groups. To do so:

1. As an admin user in the dashboard, select Project > Compute > Volumes > Volume

Consistency Groups.

2. Click Create Consistency Group.

3. In the Consistency Group Information tab of the wizard, enter a name and description for your

consistency group. Then, specify its Availability Zone.

4. You can also add volume types to your consistency group. When you create volumes within the

consistency group, the Block Storage service will apply compatible settings from those volume

types. To add a volume type, click its + button from the All available volume types list.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

19

5. Click Create Consistency Group. It should appear next in the Volume Consistency Groups

table.

You can change the name or description of a consistency group by selecting Edit Consistency Group

from its Action column.

In addition, you can also add or remove volumes from a consistency group directly. To do so:

1. As an admin user in the dashboard, select Project > Compute > Volumes > Volume

Consistency Groups.

2. Find the consistency group you want to configure. In the Actions column of that consistency

group, select Manage Volumes. Doing so will launch the Add/Remove Consistency Group

Volumes wizard.

a. To add a volume to the consistency group, click its + button from the All available volumes

list.

b. To remove a volume from the consistency group, click its - button from the Selected

volumes list.

3. Click Edit Consistency Group.

2.2.7.3. Create and Manage Consistency Group Snapshots

After adding volumes to a consistency group, you can now create snapshots from it. Before doing so,

first log in as admin user from the command line on the node hosting the openstack-cinder-api and run:

export OS_VOLUME_API_VERSION=2

Doing so will configure the client to use version 2 of openstack-cinder-api.

To list all available consistency groups (along with their respective IDs, which you will need later):

cinder consisgroup-list

To create snapshots using the consistency group, run:

cinder cgsnapshot-create --name CGSNAPNAME --description "DESCRIPTION"

CGNAMEID

Where:

CGSNAPNAME is the name of the snapshot (optional).

DESCRIPTION is a description of the snapshot (optional).

CGNAMEID is the name or ID of the consistency group.

To display a list of all available consistency group snapshots, run:

cinder cgsnapshot-list

2.2.7.4. Clone Consistency Groups

Red Hat OpenStack Platform 10 Storage Guide

20

Consistency groups can also be used to create a whole batch of pre-configured volumes simultaneously.

You can do this by cloning an existing consistency group or restoring a consistency group snapshot.

Both processes use the same command.

To clone an existing consistency group:

cinder consisgroup-create-from-src --source-cg CGNAMEID --name CGNAME --

description "DESCRIPTION"

Where: - CGNAMEID is the name or ID of the consistency group you want to clone. - CGNAME is the

name of your consistency group (optional). - DESCRIPTION is a description of your consistency group

(optional).

To create a consistency group from a consistency group snapshot:

cinder consisgroup-create-from-src --cgsnapshot CGSNAPNAME --name CGNAME

--description "DESCRIPTION"

Replace CGSNAPNAME with the name or ID of the snapshot you are using to create the consistency

group.

2.2.8. Backup Administration

The following sections discuss how to customize the Block Storage service’s volume backup settings.

2.2.8.1. View and Modify a Tenant’s Backup Quota

Unlike most tenant storage quotas (number of volumes, volume storage, snapshots, etc.), backup quotas

cannot be modified through the dashboard yet.

Backup quotas can only be modified through the command-line interface; namely, through the cinder

quota-update command.

To view the storage quotas of a specific tenant (TENANTNAME), run:

cinder quota-show TENANTNAME

To update the maximum number of backups (MAXNUM) that can be created in a specific tenant, run:

cinder quota-update --backups MAXNUM TENANTNAME

To update the maximum total size of all backups (MAXGB) within a specific tenant, run:

cinder quota-update --backup-gigabytes MAXGB TENANTNAME

To view the storage quota usage of a specific tenant, run:

cinder quota-usage TENANTNAME

2.2.8.2. Enable Volume Backup Management Through the Dashboard

You can now create, view, delete, and restore volume backups through the dashboard. To perform any

of these functions, go to the Project > Compute > Volumes > Volume Backups tab.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

21

However, the Volume Backups tab is not enabled by default. To enable it, configure the dashboard

accordingly:

1. Open /etc/openstack-dashboard/local_settings.

2. Search for the following setting:

OPENSTACK_CINDER_FEATURES = {

 'enable_backup': False,

}

Change this setting to:

OPENSTACK_CINDER_FEATURES = {

 'enable_backup': True,

}

3. Restart the dashboard by restarting the httpd service:

systemctl restart httpd.service

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

2.2.8.3. Set an NFS Share as a Backup Repository

By default, the Block Storage service uses the Object Storage service as a repository for backups. You

can configure the Block Storage service to use an existing NFS share as a backup repository instead. To

do so:

1. Log in to the node hosting the backup service (openstack-cinder-backup) as a user with

administrative privileges.

2. Configure the Block Storage service to use the NFS backup driver (cinder.backup.drivers.nfs):

crudini --set /etc/cinder/cinder.conf DEFAULT backup_driver

cinder.backup.drivers.nfs

3. Set the details of the NFS share that you want to use as a backup repository:

crudini --set /etc/cinder/cinder.conf DEFAULT backup_share

NFSHOST:PATH

Where:

NFSHOST is the IP address or hostname of the NFS server.

PATH is the absolute path of the NFS share on NFSHOST.

4. If you want to set any optional mount settings for the NFS share, run:

Red Hat OpenStack Platform 10 Storage Guide

22

crudini --set /etc/cinder/cinder.conf DEFAULT backup_mount_options

NFSMOUNTOPTS

Where NFSMOUNTOPTS is a comma-separated list of NFS mount options (for example,

rw,sync). For more information on supported mount options, see the man pages for nfs and

mount.

5. Restart the Block Storage backup service to apply your changes:

systemctl restart openstack-cinder-backup.service

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

2.2.8.3.1. Set a Different Backup File Size

The backup service limits backup files sizes to a maximum backup file size. If you are backing up a

volume that exceeds this size, the resulting backup will be split into multiple chunks. The default backup

file size is 1.8GB.

To set a different backup file size, run:

crudini --set /etc/cinder/cinder.conf DEFAULT backup_file_size SIZE

Replace SIZE with the file size you want, in bytes. Restart the Block Storage backup service to apply

your changes:

systemctl restart openstack-cinder-backup.service

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

2.3. BASIC VOLUME USAGE AND CONFIGURATION

The following procedures describe how to perform basic end-user volume management. These

procedures do not require administrative privileges.

2.3.1. Create a Volume

1. In the dashboard, select Project > Compute > Volumes.

2. Click Create Volume, and edit the following fields:

Field Description

Volume name Name of the volume.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

23

Description Optional, short description of the volume.

Type Optional volume type (see Section 2.2.1, “Group Volume Settings with

Volume Types”).

If you have multiple Block Storage back ends, you can use this to

select a specific back end. See Section 2.3.2, “Specify Back End for

Volume Creation” for details.

Size (GB) Volume size (in gigabytes).

Availability Zone Availability zones (logical server groups), along with host aggregates,

are a common method for segregating resources within OpenStack.

Availability zones are defined during installation. For more information

on availability zones and host aggregates, see Manage Host

Aggregates.

Field Description

3. Specify a Volume Source:

Source Description

No source, empty volume The volume will be empty, and will not contain a

file system or partition table.

Snapshot Use an existing snapshot as a volume source. If

you select this option, a new Use snapshot as a

source list appears; you can then choose a

snapshot from the list. For more information

about volume snapshots, refer to Section 2.3.8,

“Create, Use, or Delete Volume Snapshots”.

Image Use an existing image as a volume source. If

you select this option, a new Use image as a

source lists appears; you can then choose an

image from the list.

Volume Use an existing volume as a volume source. If

you select this option, a new Use volume as a

source list appears; you can then choose a

volume from the list.

4. Click Create Volume. After the volume is created, its name appears in the Volumes table.

You can also change the volume’s type later on. For details, see Section 2.3.10, “Changing a Volume’s

Type (Volume Re-typing)”.

2.3.2. Specify Back End for Volume Creation

Whenever multiple Block Storage back ends are configured, you will also need to create a volume type

Red Hat OpenStack Platform 10 Storage Guide

24

for each back end. You can then use the type to specify which back end should be used for a created

volume. For more information about volume types, see Section 2.2.1, “Group Volume Settings with

Volume Types”.

To specify a back end when creating a volume, select its corresponding volume type from the Type drop-

down list (see Section 2.3.1, “Create a Volume”).

If you do not specify a back end during volume creation, the Block Storage service will automatically

choose one for you. By default, the service will choose the back end with the most available free space.

You can also configure the Block Storage service to choose randomly among all available back ends

instead; for more information, see Section 2.2.6, “Configure How Volumes are Allocated to Multiple Back

Ends”.

2.3.3. Edit a Volume’s Name or Description

1. In the dashboard, select Project > Compute > Volumes.

2. Select the volume’s Edit Volume button.

3. Edit the volume name or description as required.

4. Click Edit Volume to save your changes.

NOTE

To create an encrypted volume, you must first have a volume type configured specifically

for volume encryption. In addition, both Compute and Block Storage services must be

configured to use the same static key. For information on how to set up the requirements

for volume encryption, refer to Section 2.2.5, “Configure Volume Encryption”.

2.3.4. Delete a Volume

1. In the dashboard, select Project > Compute > Volumes.

2. In the Volumes table, select the volume to delete.

3. Click Delete Volumes.

NOTE

A volume cannot be deleted if it has existing snapshots. For instructions on how to delete

snapshots, see Section 2.3.8, “Create, Use, or Delete Volume Snapshots”.

2.3.5. Attach and Detach a Volume to an Instance

Instances can use a volume for persistent storage. A volume can only be attached to one instance at a

time. For more information on instances, see Manage Instances in the Instances and Images Guide

available at Red Hat OpenStack Platform.

2.3.5.1. Attach a Volume to an Instance

1. In the dashboard, select Project > Compute > Volumes.

2. Select the volume’s Edit Attachments action. If the volume is not attached to an instance, the

Attach To Instance drop-down list is visible.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

25

3. From the Attach To Instance list, select the instance to which you wish to attach the volume.

4. Click Attach Volume.

2.3.5.2. Detach a Volume From an Instance

1. In the dashboard, select Project > Compute > Volumes.

2. Select the volume’s Manage Attachments action. If the volume is attached to an instance, the

instance’s name is displayed in the Attachments table.

3. Click Detach Volume in this and the next dialog screen.

2.3.6. Set a Volume to Read-Only

You can give multiple users shared access to a single volume without allowing them to edit its contents.

To do so, set the volume to read-only using the following command:

cinder readonly-mode-update VOLUME true

Replace VOLUME with the ID of the target volume.

To set a read-only volume back to read-write, run:

cinder readonly-mode-update VOLUME false

2.3.7. Change a Volume’s Owner

To change a volume’s owner, you will have to perform a volume transfer. A volume transfer is initiated by

the volume’s owner, and the volume’s change in ownership is complete after the transfer is accepted by

the volume’s new owner.

2.3.7.1. Transfer a Volume from the Command Line

1. Log in as the volume’s current owner.

2. List the available volumes:

cinder list

3. Initiate the volume transfer:

cinder transfer-create VOLUME

Where VOLUME is the name or ID of the volume you wish to transfer. For example,

 +------------+--------------------------------------+

 | Property | Value |

 +------------+--------------------------------------+

 | auth_key | f03bf51ce7ead189 |

 | created_at | 2014-12-08T03:46:31.884066 |

 | id | 3f5dc551-c675-4205-a13a-d30f88527490 |

Red Hat OpenStack Platform 10 Storage Guide

26

 | name | None |

 | volume_id | bcf7d015-4843-464c-880d-7376851ca728 |

 +------------+--------------------------------------+

The cinder transfer-create command clears the ownership of the volume and creates an

id and auth_key for the transfer. These values can be given to, and used by, another user to

accept the transfer and become the new owner of the volume.

4. The new user can now claim ownership of the volume. To do so, the user should first log in from

the command line and run:

cinder transfer-accept TRANSFERID TRANSFERKEY

Where TRANSFERID and TRANSFERKEY are the id and auth_key values returned by the

cinder transfer-create command, respectively. For example,

cinder transfer-accept 3f5dc551-c675-4205-a13a-d30f88527490

f03bf51ce7ead189

NOTE

You can view all available volume transfers using:

cinder transfer-list

2.3.7.2. Transfer a Volume Using the Dashboard

Create a volume transfer from the dashboard

1. As the volume owner in the dashboard, select Projects > Volumes.

2. In the Actions column of the volume to transfer, select Create Transfer.

3. In the Create Transfer dialog box, enter a name for the transfer and click Create Volume

Transfer.

The volume transfer is created and in the Volume Transfer screen you can capture the

transfer ID and the authorization key to send to the recipient project.

NOTE

The authorization key is available only in the Volume Transfer screen. If you lose

the authorization key, you must cancel the transfer and create another transfer to

generate a new authorization key.

4. Close the Volume Transfer screen to return to the volume list.

The volume status changes to awaiting-transfer until the recipient project accepts the

transfer

Accept a volume transfer from the dashboard

1. As the recipient project owner in the dashboard, select Projects > Volumes.

2. Click Accept Transfer.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

27

3. In the Accept Volume Transfer dialog box, enter the transfer ID and the authorization

key that you received from the volume owner and click Accept Volume Transfer.

The volume now appears in the volume list for the active project.

2.3.8. Create, Use, or Delete Volume Snapshots

You can preserve a volume’s state at a specific point in time by creating a volume snapshot. You can

then use the snapshot to clone new volumes.

NOTE

Volume backups are different from snapshots. Backups preserve the data contained in

the volume, whereas snapshots preserve the state of a volume at a specific point in time.

In addition, you cannot delete a volume if it has existing snapshots. Volume backups are

used to prevent data loss, whereas snapshots are used to facilitate cloning.

For this reason, snapshot back ends are typically co-located with volume back ends in

order to minimize latency during cloning. By contrast, a backup repository is usually

located in a different location (eg. different node, physical storage, or even geographical

location) in a typical enterprise deployment. This is to protect the backup repository from

any damage that might occur to the volume back end.

For more information about volume backups, refer to Section 2.4.1, “Back Up and Restore

a Volume”

To create a volume snapshot:

1. In the dashboard, select Project > Compute > Volumes.

2. Select the target volume’s Create Snapshot action.

3. Provide a Snapshot Name for the snapshot and click Create a Volume Snapshot. The Volume

Snapshots tab displays all snapshots.

You can clone new volumes from a snapshot once it appears in the Volume Snapshots table. To do so,

select the snapshot’s Create Volume action. For more information about volume creation, see

Section 2.3.1, “Create a Volume”.

To delete a snapshot, select its Delete Volume Snapshot action.

If your OpenStack deployment uses a Red Hat Ceph back end, see Section 2.3.8.1, “Protected and

Unprotected Snapshots in a Red Hat Ceph Back End” for more information on snapshot security and

troubleshooting.

2.3.8.1. Protected and Unprotected Snapshots in a Red Hat Ceph Back End

When using Red Hat Ceph as a back end for your OpenStack deployment, you can set a snapshot to

protected in the back end. Attempting to delete protected snapshots through OpenStack (as in, through

the dashboard or the cinder snapshot-delete command) will fail.

When this occurs, set the snapshot to unprotected in the Red Hat Ceph back end first. Afterwards, you

should be able to delete the snapshot through OpenStack as normal.

For related instructions, see Protecting a Snapshot and Unprotecting a Snapshot.

Red Hat OpenStack Platform 10 Storage Guide

28

2.3.9. Upload a Volume to the Image Service

You can upload an existing volume as an image to the Image service directly. To do so:

1. In the dashboard, select Project > Compute > Volumes.

2. Select the target volume’s Upload to Image action.

3. Provide an Image Name for the volume and select a Disk Format from the list.

4. Click Upload. The QEMU disk image utility uploads a new image of the chosen format using the

name you provided.

To view the uploaded image, select Project > Compute > Images. The new image appears in the

Images table. For information on how to use and configure images, see Manage Images in the

Instances and Images Guide available at Red Hat OpenStack Platform.

2.3.10. Changing a Volume’s Type (Volume Re-typing)

Volume re-typing is the process of applying a volume type (and, in turn, its settings) to an already existing

volume. For more information about volume types, see Section 2.2.1, “Group Volume Settings with

Volume Types”.

A volume can be re-typed whether or not it has an existing volume type. In either case, a re-type will only

be successful if the Extra Specs of the volume type can be applied to the volume. Volume re-typing is

useful for applying pre-defined settings or storage attributes to an existing volume, such as when you

want to:

Migrate the volume to a different back end (Section 2.4.2.2, “Migrate Between Back Ends”).

Change the volume’s storage class/tier.

Users with no administrative privileges can only re-type volumes they own. To perform a volume re-type:

1. In the dashboard, select Project > Compute > Volumes.

2. In the Actions column of the volume to be migrated, select Change Volume Type.

3. In the Change Volume Type dialog, select the target volume type defining the new back end

from the Type drop-down list.

NOTE

If you are migrating the volume to another back end, select On Demand from the

Migration Policy drop-down list. For more information, see Section 2.4.2.2,

“Migrate Between Back Ends”.

4. Click Change Volume Type to start the migration.

2.4. ADVANCED VOLUME CONFIGURATION

The following procedures describe how to perform advanced volume management procedures.

2.4.1. Back Up and Restore a Volume

CHAPTER 2. BLOCK STORAGE AND VOLUMES

29

A volume backup is a persistent copy of a volume’s contents. Volume backups are typically created as

object stores, and are managed through the Object Storage service by default. You can, however, set up

a different repository for your backups; OpenStack supports Red Hat Ceph and NFS as alternative back

ends for backups.

When creating a volume backup, all of the backup’s metadata is stored in the Block Storage service’s

database. The cinder utility uses this metadata when restoring a volume from the backup. As such,

when recovering from a catastrophic database loss, you must restore the Block Storage service’s

database first before restoring any volumes from backups. This also presumes that the Block Storage

service database is being restored with all the original volume backup metadata intact.

If you wish to configure only a subset of volume backups to survive a catastrophic database loss, you

can also export the backup’s metadata. In doing so, you can then re-import the metadata to the Block

Storage database later on, and restore the volume backup as normal.

NOTE

Volume backups are different from snapshots. Backups preserve the data contained in

the volume, whereas snapshots preserve the state of a volume at a specific point in time.

In addition, you cannot delete a volume if it has existing snapshots. Volume backups are

used to prevent data loss, whereas snapshots are used to facilitate cloning.

For this reason, snapshot back ends are typically co-located with volume back ends in

order to minimize latency during cloning. By contrast, a backup repository is usually

located in a different location (eg. different node, physical storage, or even geographical

location) in a typical enterprise deployment. This is to protect the backup repository from

any damage that might occur to the volume back end.

For more information about volume snapshots, refer to Section 2.3.8, “Create, Use, or

Delete Volume Snapshots”.

2.4.1.1. Create a Full Volume Backup

To back up a volume, use the cinder backup-create command. By default, this command will

create a full backup of the volume. If the volume has existing backups, you can choose to create an

incremental backup instead (see Section 2.4.1.2, “Create an Incremental Volume Backup” for details.)

You can create backups of volumes you have access to. This means that users with administrative

privileges can back up any volume, regardless of owner. For more information, see Section 2.4.1.1.1,

“Create a Volume Backup as an Admin”.

1. View the ID or Display Name of the volume you wish to back up:

cinder list

2. Back up the volume:

cinder backup-create VOLUME

Replace VOLUME with the ID or Display Name of the volume you want to back up. For

example:

 +-----------+--------------------------------------+

 | Property | Value |

 +-----------+--------------------------------------+

Red Hat OpenStack Platform 10 Storage Guide

30

 | id | e9d15fc7-eeae-4ca4-aa72-d52536dc551d |

 | name | None |

 | volume_id | 5f75430a-abff-4cc7-b74e-f808234fa6c5 |

 +-----------+--------------------------------------+

NOTE

The volume_id of the resulting backup is identical to the ID of the source

volume.

3. Verify that the volume backup creation is complete:

cinder backup-list

The volume backup creation is complete when the Status of the backup entry is available.

At this point, you can also export and store the volume backup’s metadata. This allows you to restore the

volume backup, even if the Block Storage database suffers a catastrophic loss. To do so, run:

cinder --os-volume-api-version 2 backup-export BACKUPID

Where BACKUPID is the ID or name of the volume backup. For example,

+----------------+--+

| Property | Value |

+----------------+--+

| backup_service | cinder.backup.drivers.swift |

| backup_url | eyJzdGF0dXMiOiAiYXZhaWxhYmxlIiwgIm9iam...|

| | ...4NS02ZmY4MzBhZWYwNWUiLCAic2l6ZSI6IDF9 |

+----------------+--+

The volume backup metadata consists of the backup_service and backup_url values.

2.4.1.1.1. Create a Volume Backup as an Admin

Users with administrative privileges (such as the default admin account) can back up any volume

managed by OpenStack. When an admin backs up a volume owned by a non-admin user, the backup is

hidden from the volume owner by default.

As an admin, you can still back up a volume and make the backup available to a specific tenant. To do

so, run:

cinder --os-auth-url KEYSTONEURL --os-tenant-name TENANTNAME --os-

username USERNAME --os-password PASSWD backup-create VOLUME

Where:

TENANTNAME is the name of the tenant where you want to make the backup available.

USERNAME and PASSWD are the username/password credentials of a user within

TENANTNAME.

VOLUME is the name or ID of the volume you want to back up.

CHAPTER 2. BLOCK STORAGE AND VOLUMES

31

KEYSTONEURL is the URL endpoint of the Identity service (typically http://IP:5000/v2, where IP

is the IP address of the Identity service host).

When performing this operation, the resulting backup’s size will count against the quota of

TENANTNAME rather than the admin’s tenant.

2.4.1.2. Create an Incremental Volume Backup

By default, the cinder backup-create command will create a full backup of a volume. However, if

the volume has existing backups, you can choose to create an incremental backup.

An incremental backup captures any changes to the volume since the last backup (full or incremental).

Performing numerous, regular, full back ups of a volume can become resource-intensive as the volume’s

size increases over time. In this regard, incremental backups allow you to capture periodic changes to

volumes while minimizing resource usage.

To create an incremental volume backup, use the --incremental option. As in:

cinder backup-create VOLUME --incremental

Replace VOLUME with the ID or Display Name of the volume you want to back up. Incremental

backups are fully supported on NFS and Object Storage backup repositories.

NOTE

You cannot delete a full backup if it already has an incremental backup. In addition, if a

full backup has multiple incremental backups, you can only delete the latest one.

WARNING

When using Red Hat Ceph Storage as a back end for both Block Storage (cinder)

volumes and backups, any attempt to perform an incremental backup will result in a

full backup instead, without any warning. This is a known issue (BZ#1463059).

2.4.1.3. Restore a Volume After a Block Storage Database Loss

Typically, a Block Storage database loss prevents you from restoring a volume backup. This is because

the Block Storage database contains metadata required by the volume backup service (openstack-

cinder-backup). This metadata consists of backup_service and backup_url values, which you can

export after creating the volume backup (as shown in Section 2.4.1.1, “Create a Full Volume Backup”).

If you exported and stored this metadata, then you can import it to a new Block Storage database

(thereby allowing you to restore the volume backup).

1. As a user with administrative privileges, run:

cinder --os-volume-api-version 2 backup-import backup_service

backup_url

�

Red Hat OpenStack Platform 10 Storage Guide

32

Where backup_service and backup_url are from the metadata you exported. For example, using

the exported metadata from Section 2.4.1.1, “Create a Full Volume Backup”:

cinder --os-volume-api-version 2 backup-import

cinder.backup.drivers.swift eyJzdGF0dXMi...c2l6ZSI6IDF9

+----------+--------------------------------------+

| Property | Value |

+----------+--------------------------------------+

| id | 77951e2f-4aff-4365-8c64-f833802eaa43 |

| name | None |

+----------+--------------------------------------+

2. After the metadata is imported into the Block Storage service database, you can restore the

volume as normal (see Section 2.4.1.4, “Restore a Volume from a Backup”).

2.4.1.4. Restore a Volume from a Backup

1. Find the ID of the volume backup you wish to use:

cinder backup-list

The Volume ID should match the ID of the volume you wish to restore.

2. Restore the volume backup:

cinder backup-restore BACKUP_ID

Where BACKUP_ID is the ID of the volume backup you wish to use.

3. If you no longer need the backup, delete it:

cinder backup-delete BACKUP_ID

2.4.2. Migrate a Volume

The Block Storage service allows you to migrate volumes between hosts or back ends. Volume

migration has some limitations:

The volume can not be in-use (attached to an instance) or have snapshots.

The target of the in-use volume migration requires ISCSI block-backed devices and can not use

non-block devices, such as Ceph RADOS Block Device (RBD).

Migrations between volumes on different back ends (and thus drivers) are not optimized.

The speed of any migration depends upon your host setup and configuration. With driver-assisted

migration, the data movement takes place at the storage backplane instead of inside of the OpenStack

Block Storage service. Otherwise, data is copied from one host to another through the Block Storage

service.

2.4.2.1. Migrate Between Hosts

When migrating a volume between hosts, both hosts must reside on the same back end. Use the

dashboard to perform the migration:

CHAPTER 2. BLOCK STORAGE AND VOLUMES

33

1. In the dashboard, select Admin > Volumes.

2. In the Actions column of the volume to be migrated, select Migrate Volume.

3. In the Migrate Volume dialog, select the target host from the Destination Host drop-down list.

NOTE

If you wish to bypass any driver optimizations for the host migration, select the

Force Host Copy checkbox.

4. Click Migrate to start the migration.

2.4.2.2. Migrate Between Back Ends

Migrating a volume between back ends, on the other hand, involves volume re-typing. This means that

in order to migrate to a new back end:

1. The new back end must be specified as an Extra Spec in a separate target volume type.

2. All other Extra Specs defined in the target volume type must be compatible with the volume’s

original volume type.

See Section 2.2.1, “Group Volume Settings with Volume Types” and Section 2.3.2, “Specify Back End

for Volume Creation” for more details.

When defining the back end as an Extra Spec, use volume_backend_name as the Key. Its

corresponding value will be the back end’s name, as defined in the Block Storage configuration file

(/etc/cinder/cinder.conf). In this file, each back end is defined in its own section, and its corresponding

name is set in the volume_backend_name parameter.

Once you have a back end defined in a target volume type, you can migrate a volume to that back end

through re-typing. This involves re-applying the target volume type to a volume, thereby applying the

new back end settings. See Section 2.3.10, “Changing a Volume’s Type (Volume Re-typing)” for

instructions.

To do so:

1. In the dashboard, select Project > Compute > Volumes.

2. In the Actions column of the volume to be migrated, select Change Volume Type.

3. In the Change Volume Type dialog, select the target volume type defining the new back end

from the Type drop-down list.

4. Select On Demand from the Migration Policy drop-down list.

5. Click Change Volume Type to start the migration.

Red Hat OpenStack Platform 10 Storage Guide

34

CHAPTER 3. OBJECT STORAGE

OpenStack Object Storage (openstack-swift) stores its objects (data) in containers, which are similar to

directories in a file system although they cannot be nested. Containers provide an easy way for users to

store any kind of unstructured data; for example, objects might include photos, text files, or images.

Stored objects are not compressed.

3.1. OBJECT STORAGE SERVICE ADMINISTRATION

The following procedures explain how to further customize the Object Storage service to suit your needs.

3.1.1. Configure Erasure Coding

Erasure coding (EC) is a method of data protection in which the data is broken into fragments, expanded

and encoded with redundant data pieces and stored across a set of different locations or storage media.

It uses a smaller volume of storage to attain the required durability than traditional replication. When

compared to replication factor of 3, savings of 50% may be attained with careful deployment. However,

depending on the workload, erasure coding may incur a performance penalty.

Erasure coding is supported for Object Storage service as a Storage Policy. A Storage Policy allows

segmenting the cluster for various purposes through the creation of multiple object rings. Red Hat

recommends you split off devices used by erasure coding and replication Storage Policies. This way

behavior of the cluster is easier to analyze.

The direction you choose depends on why the erasure coding policy is being deployed. Some of the

main considerations are:

Layout of existing infrastructure.

Cost of adding dedicated erasure coding nodes (or just dedicated erasure coding devices).

Intended usage model(s).

3.1.1.1. Configure an Erasure Coding Policy

To use erasure coding, first define an additional policy for it in /etc/swift/swift.conf. The Sample

Erasure Coding Policy below shows a typical example:

Sample Erasure Coding Policy

[storage-policy:1]

default = no

name = ec104

alias = myec,erasure_coding

policy_type = erasure_coding

ec_type = jerasure_rs_vand

ec_num_data_fragments = 10

ec_num_parity_fragments = 4

ec_object_segment_size = 1048576

CHAPTER 3. OBJECT STORAGE

35

NOTE

Object Storage policy headers (for example, [storage-policy:1]) include an index

number — in this case, 1. The Object Storage index count begins at 0, and therefore the

Sample Erasure Coding Policy above assumes that another policy with the policy index 0

already exists. For example:

[storage-policy:0]

name = default

default = yes

After defining the erasure coding policy, you will need to create and configure its associated object

storage ring. See Section 3.1.1.2, “Configure an Object Storage Ring” for instructions.

The following table explains the different parameters used in Sample Erasure Coding Policy:

Table 3.1. Storage Policy Parameters

Term Description

default Sets whether this policy is the default one or not (yes/no). This

is used if there are multiple policies defined in

/etc/swift/swift.conf.

name This is a standard storage policy parameter.

alias Comma-delimited list of other names that the policy is known as.

policy_type Set this to erasure_coding to indicate that this is an erasure

coding policy.

ec_type This specifies the erasure coding scheme that is to be used. See

Table 3.2, “Supported Erasure Coding Schemes” for a list of

supported values.

ec_num_data_fragments The total number of fragments that will be comprised of data.

ec_num_parity_fragments The total number of fragments that will be comprised of parity.

ec_object_segment_size The amount of data that will be buffered up before feeding a

segment into the encoder/decoder. The default value is

1048576.

Table 3.2. Supported Erasure Coding Schemes

Scheme Description/Reference

liberasurecode_rs_vand Vandermonde Reed-Solomon encoding, software-only backend

implemented by liberasurecode

Red Hat OpenStack Platform 10 Storage Guide

36

jerasure_rs_vand Vandermonde Reed-Solomon encoding, based on Jerasure

jerasure_rs_cauchy Cauchy Reed-Solomon encoding (Jerasure variant), based on

Jerasure

flat_xor_hd_3, flat_xor_hd_4 Flat-XOR based HD combination codes, liberasurecode

isa_l_rs_vand Intel Storage Acceleration Library (ISA-L) - SIMD accelerated

Erasure Coding backends

Scheme Description/Reference

When the Object Storage service encodes an object, it breaks it into fragments. It is important during

configuration to know how many of those fragments are data and how many are parity. So in the Sample

Erasure Coding Policy, an object will be broken into 14 different fragments, 10 of them will be made up of

actual object data and 4 of them will be made of parity data (calculations depending on ec_type). With

such a configuration, the system can sustain 4 disk failures before the data is lost. Other commonly used

configurations are 4+2 (with 4 data fragments and 2 parity fragments) or 8+3 (with 8 data fragments and

3 parity fragments).

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

IMPORTANT

Once you have deployed a policy and have created objects with that policy, these

configurations options cannot be changed. In case a change in the configuration is

desired, you must create a new policy and migrate the data to a new container. However,

once defined, policy indices cannot be discarded. If policies are to be retired, they may be

retired, but not be removed. There is essentially no performance penalty for having old

policies around, but a minor administrative overhead.

3.1.1.2. Configure an Object Storage Ring

Object Storage uses a data structure called the Ring to distribute a partition space across the cluster.

This partition space is core to the data durability engine in Object Storage service. It allows the Object

Storage service to quickly and easily synchronize each partition across the cluster. When any component

in Swift needs to interact with data, a quick lookup is done locally in the Ring to determine the possible

partitions for each object.

The Object Storage service already has three rings to store different types of data. There is one for

account information, another for containers (so that it’s convenient to organize objects under an account)

and another for the object replicas. To support erasure codes, there will be an additional ring that is

created to store erasure code objects.

To create a typical replication ring, for example, you can use the following command:

swift-ring-builder object-1.builder create 10 3 1

CHAPTER 3. OBJECT STORAGE

37

Where 3 is the number of replicas.

In order to create an erasure coding object ring, you need to use the number of fragments in place of the

number of replicas, for example:

swift-ring-builder object-1.builder create 10 14 1

Where 14 is for a 10+4 configuration with 10 data fragments and 4 parity fragments.

Consider the performance impacts when deciding which devices to use in the erasure coding policy’s

object ring. We recommend that you run some performance benchmarking in a test environment for the

configuration before deployment. After you have configured your erasure coding policy in the

/etc/swift/swift.conf and created your object ring, your application is ready to start using erasure coding

by creating a container with the specified policy name and interacting as usual.

3.1.1.3. Using Erasure Coding

After defining a new Erasure Coding policy and configuring its object storage ring, you can use it when

creating a new container for the first time. If you have multiple policies defined, each container will be

created with the default storage policy assigned.

To use a non-default storage policy with a new container, you need to submit a special metadata header

when creating the container. For example, to use the Sample Erasure Coding Policy policy defined in

Section 3.1.1.1, “Configure an Erasure Coding Policy” on a new container (CONTAINERNAME), run:

swift post -H "X-Storage-Policy:ec104" CONTAINERNAME

3.1.2. Configure Fast-POST

By default, the Object Storage service will copy an object whole whenever any part of its metadata

changes. You can prevent this using the fast-post feature. This is useful if you want to save time in

changing the content types of multiple large objects.

To enable the fast-post feature, disable the object_post_as_copy option on the Object Storage proxy

service. To do this:

1. Log in to the nodes hosting the Object Storage proxy service.

2. Open /etc/swift/proxy-server.conf.

3. Under the [app:proxy-server] section, set object_post_as_copy to false:

[app:proxy-server]

use = egg:swift#proxy

set log_name = proxy-server

…

object_post_as_copy = false

…

4. Restart the Object Storage proxy services on the node:

systemctl restart openstack-swift-proxy.service

systemctl restart openstack-swift-object-expirer.service

Red Hat OpenStack Platform 10 Storage Guide

38

If any storage policies other than policy-0 are listed in /etc/swift/swift.conf, run the

following as well:

systemctl restart openstack-swift-container-reconciler.service

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

NOTE

On a typical overcloud deployment, the Object Storage service is installed on the

Controller nodes.

3.1.3. Set Object Storage as a Back End for the Image Service

The OpenStack Image service, by default, saves images and instance snapshots to the local filesystem

in /var/lib/glance/images/. Alternatively, you can configure the Image service to save images

and snapshots to the Object Storage service (when available).

To do so, perform the following procedure:

1. Log into the node running the Image service (the controller node also running Identity) as root

and source your OpenStack credentials (this is typically a file named openrc).

source ~/openrc

2. Verify that the Image service is part of the tenant services with role admin.

openstack user role list --project services glance

One of the roles returned should be admin.

3. Open the /etc/glance/glance.conf file and comment out the following lines:

DEFAULT OPTIONS

#default_store = file

#filesystem_store_datadir = /var/lib/glance/images/

4. In the same file, add the following lines to the DEFAULT OPTIONS section.

default_store = swift

swift_store_auth_address = http://KEYSTONEIP:35357/v2.0/

swift_store_user = service:glance

swift_store_key = ADMINPW

swift_store_create_container_on_put = True

Where:

KEYSTONEIP is the IP address of the Identity service, and

CHAPTER 3. OBJECT STORAGE

39

ADMINPW is the value of admin password attribute in the /etc/glance/glance-

api.conf file.

5. Apply the changes by restarting the Image service:

systemctl restart openstack-glance-api

systemctl restart openstack-glance-registry

From this point onwards, images uploaded to the Image service (whether through the Dashboard or

glance) should now be saved to an Object Storage container named glance. This container exists in

the service account.

To verify whether newly-created images are saved to the Image service, run:

ls /var/lib/glance/images

Once the Dashboard or the glance image-list reports the image is active, you can verify whether it

is in Object Storage by running the following command:

swift --os-auth-url http://KEYSTONEIP:5000/v2.0 --os-tenant-name service

--os-username glance --os-password ADMINPW list glance

NOTE

This procedure involves configuring a service outside of the director. As such, you may

need to repeat it the next time you re-deploy or update the overcloud.

3.1.4. Enable At-Rest Encryption

NOTE

At-rest encryption is marked as Technology Preview for the Red Hat OpenStack Platform

10. For more information on the support scope for features marked as technology

previews, see https://access.redhat.com/support/offerings/techpreview/

By default, objects uploaded to Object Storage are kept unencrypted. Because of this, it is possible to

access objects directly from the file system. This can present a security risk if disks are not properly

erased before they are discarded.

Even with encryption, it is important to use a different method to dispose of the root disk of the proxy, as

access to both this and the storage node disks may allow an attacker to decrypt the data.

The following changes need to be made on the overcloud.

To enable encryption of swift object stores:

1. In /etc/swift/proxy-server.conf, add these lines, replacing the value of

encryption_root_secret with your encryption key:

[pipeline:main]

pipeline = catch_errors healthcheck proxy-logging cache ratelimit

bulk tempurl formpost authtoken keystone staticweb keymaster

encryption proxy-logging proxy-server

Red Hat OpenStack Platform 10 Storage Guide

40

[filter:keymaster]

use = egg:swift#keymaster

encryption_root_secret =

[filter:encryption]

use = egg:swift#encryption

disable_encryption = False

2. Restart the proxy service for the changes to come into effect:

systemctl restart openstack-swift-proxy.service

To verify that objects are now being encrypted:

1. Add a new object to test:

swift upload container1 testobj

2. Verify the data is encrypted data by viewing it with cat. For example:

cat

/srv/node/sdb/objects/603/424/35c4ea21cc96663792465462570b2424/14773

99821.58002.data

NOTE

Changing the encryption key and then attempting to download previously uploaded files

will cause an error and may result in data loss.

3.2. BASIC CONTAINER MANAGEMENT

To help with organization, pseudo-folders are logical devices that can contain objects (and can be

nested). For example, you might create an Images folder in which to store pictures and a Media folder in

which to store videos.

You can create one or more containers in each project, and one or more objects or pseudo-folders in

each container.

3.2.1. Create a Container

1. In the dashboard, select Project > Object Store > Containers.

2. Click Create Container.

3. Specify the Container Name, and select one of the following in the Container Access field.

Type Description

Private Limits access to a user in the current project.

CHAPTER 3. OBJECT STORAGE

41

Public Permits API access to anyone with the public

URL. However, in the dashboard, project users

cannot see public containers and data from other

projects.

Type Description

4. Click Create Container.

New containers use the default storage policy. If you have multiple storage policies defined (for

example, a default one and another that enables erasure coding), you can configure a container to use a

non-default storage policy through the command line. To do so, run:

swift post -H "X-Storage-Policy:POLICY" CONTAINERNAME

Where:

POLICY is the name or alias of the policy you want the container to use. See Section 3.1.1.1,

“Configure an Erasure Coding Policy” for a sample policy that uses erasure coding.

CONTAINERNAME is the name of the container.

3.2.2. Create a Pseudo Folder for a Container

1. In the dashboard, select Project > Object Store > Containers.

2. Click the name of the container to which you want to add the pseudo-folder.

3. Click Create Pseudo-folder.

4. Specify the name in the Pseudo-folder Name field, and click Create.

3.2.3. Delete a Container

1. In the dashboard, select Project > Object Store > Containers.

2. Browse for the container in the Containers section, and ensure all objects have been deleted

(see Section 3.2.6, “Delete an Object”).

3. Select Delete Container in the container’s arrow menu.

4. Click Delete Container to confirm the container’s removal.

3.2.4. Upload an Object

If you do not upload an actual file, the object is still created (as placeholder) and can later be used to

upload the file.

1. In the dashboard, select Project > Object Store > Containers.

2. Click the name of the container in which the uploaded object will be placed; if a pseudo-folder

already exists in the container, you can click its name.

Red Hat OpenStack Platform 10 Storage Guide

42

3. Browse for your file, and click Upload Object.

4. Specify a name in the Object Name field:

Pseudo-folders can be specified in the name using a / character (for example,

Images/myImage.jpg). If the specified folder does not already exist, it is created when the

object is uploaded.

A name that is not unique to the location (that is, the object already exists) overwrites the

object’s contents.

5. Click Upload Object.

3.2.5. Copy an Object

1. In the dashboard, select Project > Object Store > Containers.

2. Click the name of the object’s container or folder (to display the object).

3. Click Upload Object.

4. Browse for the file to be copied, and select Copy in its arrow menu.

5. Specify the following:

Field Description

Destination container Target container for the new object.

Path Pseudo-folder in the destination container; if the

folder does not already exist, it is created.

Destination object name New object’s name. If you use a name that is not

unique to the location (that is, the object already

exists), it overwrites the object’s previous

contents.

6. Click Copy Object.

3.2.6. Delete an Object

1. In the dashboard, select Project > Object Store > Containers.

2. Browse for the object, and select Delete Object in its arrow menu.

3. Click Delete Object to confirm the object’s removal.

CHAPTER 3. OBJECT STORAGE

43

CHAPTER 4. FILE SHARES

The OpenStack Shared File Systems service (openstack-manila) provides the means to easily

provision shared file systems that can be consumed by multiple instances. In the past, OpenStack users

needed to manually deploy shared file systems before mounting them on instances. The OpenStack

Shared File Systems service, on the other hand, allows users to easily provision shares from a pre-

configured storage pool, ready to be mounted securely. This pool, in turn, can be independently

managed and scaled to meet demand.

4.1. BACK ENDS

When deploying Red Hat OpenStack Platform for the environment, we recommend using the director.

Doing so helps ensure the proper configuration of each service, including the Shared File System

service (and, by extension, its back end). The director also has several integrated back end

configurations:

NetApp

CephFS (Technology Preview)

For a complete list of supported back end appliances and drivers, see Component, Plug-In, and Driver

Support in RHEL OpenStack Platform.

4.2. CREATE AND MANAGE SHARES

When creating a share on a non-default back end, you need to explicitly specify which back end to use.

To make the process seamless for users, create a share type and associate it with the

share_backend_name value of each back end. To create a share type named SHARETYPE, run the

following as an OpenStack admin:

manila type-create SHARETYPE DHSS

DHSS (or driver handles share servers) specifies whether the share type will use drivers that handle

share servers. This should match the value of driver_handles_share_servers in your back end

definition (true or false).

For example, to create a share type named general based on a back end configured with

driver_handles_share_servers=false:

manila type-create general false

After creating the share type, you can map it to a back end. To do so:

manila type-key SHARETYPE set share_backend_name='SHAREBACKEND'

Replace SHAREBACKEND with the name of the back end — specifically, its share_backend_name

value. With this, the Shared File System Service will use the SHAREBACKEND back end whenever you

invoke SHARETYPE during share creation (as in Section 4.3, “Create a Share”). For example, to map

the share type general to the back end cdotSingleSVM:

manila type-key general set share_backend_name='cdotSingleSVM'

Red Hat OpenStack Platform 10 Storage Guide

44

With this release, the Shared File System Service only supports NetApp storage controllers as back

ends. See Creating and Defining Manila Share Types for information on extra specs supported by

NetApp.

4.3. CREATE A SHARE

To create a share, log in to the Shared File System service host and run:

manila create --share-type SHARETYPE --name SHARENAME PROTO GB

Where:

SHARETYPE applies settings associated with the specified share type.

SHARENAME is the name of the share.

PROTO is the share protocol you want to use.

GB is the size of the share, in GB.

For example, in Section 4.2, “Create and Manage Shares” we created a share type named general,

which we mapped to the back end cdotSingleSVM. To create a 1 GB NFS share named share-01 on

the cdotSingleSVM back end , run:

manila create --share-type general --name share-01 nfs 10

 +-------------------+--------------------------------------+

 | Property | Value |

 +-------------------+--------------------------------------+

 | status | creating |

 | description | None |

 | availability_zone | nova |

 | share_network_id | None |

 | export_locations | [] |

 | share_server_id | None |

 | host | None |

 | snapshot_id | None |

 | is_public | False |

 | id | d760eee8-1d91-48c4-8f9a-ad07072e17a2 |

 | size | 10 |

 | name | share-01 |

 | share_type | 8245657b-ab9e-4db1-8224-451c32d6b5ea |

 | created_at | 2015-09-29T16:27:54.092272 |

 | export_location | None |

 | share_proto | NFS |

 | project_id | a19dc7ec562c4ed48cea58d22eb0d3c7 |

 | metadata | {} |

 +-------------------+--------------------------------------+

4.4. LIST SHARES AND EXPORT INFORMATION

To verify that the shares were created successfully:

manila list

 +--------------------------------------+----------+-----+-----------+

CHAPTER 4. FILE SHARES

45

 | ID | Name | ... | Status ...

 +--------------------------------------+----------+-----+-----------+

 | d760eee8-1d91-48c4-8f9a-ad07072e17a2 | share-01 | ... | available ...

 +--------------------------------------+----------+-----+-----------+

The manila list command will also display the export location of the share:

 +---+

 | Export location ...

 +---+

 | 10.70.37.46:/manila-nfs-volume-01/share-d760eee8-1d91-...

 +---+

This information will be used later when mounting the share (Section 4.6, “Mount a Share on an

Instance”).

4.5. GRANT SHARE ACCESS

Before you can mount a share on an instance, grant the instance access to the share first:

manila access-allow SHAREID IDENT IDENTKEY

Where:

SHAREID is the ID of the share created in Section 4.3, “Create a Share”.

IDENT is the method that the Shared File System service should use to authenticate a share

user or instance.

The IDENTKEY varies depending on what identifying method you choose as IDENT:

cert: this method is used for authenticating an instance through TLS certificates.

user: use this to authenticate by user or group name.

ip: use this to authenticate an instance through its IP address.

For example, to grant read-write access to an instance (identified by the IP 10.70.36.85), run:

manila access-allow d760eee8-1d91-48c4-8f9a-ad07072e17a2 ip 10.70.36.85

 +--------------+--------------------------------------+

 | Property | Value |

 +--------------+--------------------------------------+

 | share_id | d760eee8-1d91-48c4-8f9a-ad07072e17a2 |

 | deleted | False |

 | created_at | 2015-09-29T16:35:33.862114 |

 | updated_at | None |

 | access_type | ip |

 | access_to | 10.70.36.85 |

 | access_level | rw |

 | state | new |

 | deleted_at | None |

 | id | b4e990d7-e9d1-4801-bcbe-a860fc1401d1 |

 +--------------+--------------------------------------+

Red Hat OpenStack Platform 10 Storage Guide

46

Note that access to the share has its own ID (ACCESSID), b4e990d7-e9d1-4801-bcbe-

a860fc1401d1.

To verify that the access configuration was successful:

manila access-list d760eee8-1d91-48c4-8f9a-ad07072e17a2

 +---------------------------+-----------+-----------+--------------+

 | id |access type|access to | access level ...

 +---------------------------+-----------+-----------+--------------+

 |b4e990d7-e9d1-4801-bcbe-...|ip |10.70.36.85| rw ...

 +---------------------------+-----------+-----------+--------------+

4.6. MOUNT A SHARE ON AN INSTANCE

After configuring the share to authenticate an instance, you can then mount the share. For example, to

mount the share from Section 4.3, “Create a Share” to /mnt on the instance from Section 4.5, “Grant

Share Access”, log in to the instance and mount as normal:

ssh root@10.70.36.85

mount -t nfs -o vers=3 10.70.37.46:/manila-nfs-volume-01/share-d760eee8-

1d91-48c4-8f9a-ad07072e17a2 /mnt

See Section 4.4, “List Shares and Export Information” to learn how to view a share’s export information.

4.7. REVOKE ACCESS TO A SHARE

To revoke previously-granted access to a share, you need to delete the access to the share:

manila access-deny SHAREID ACCESSID

For example, to revoke the access granted earlier in Section 4.5, “Grant Share Access”:

manila access-list d760eee8-1d91-48c4-8f9a-ad07072e17a2

 +---------------------------+-----------+-----------+--------------+

 | id |access type|access to | access level ...

 +---------------------------+-----------+-----------+--------------+

 |b4e990d7-e9d1-4801-bcbe-...|ip |10.70.36.85| rw ...

 +---------------------------+-----------+-----------+--------------+

manila access-deny d760eee8-1d91-48c4-8f9a-ad07072e17a2 b4e990d7-e9d1-

4801-bcbe-a860fc1401d1

At this point, the instance will no longer be able to use the mounted share.

4.8. DELETE A SHARE

To delete a share:

manila delete SHAREID

For example:

manila delete d760eee8-1d91-48c4-8f9a-ad07072e17a2

CHAPTER 4. FILE SHARES

47

Red Hat OpenStack Platform 10 Storage Guide

48

